
www.manaraa.com

Log-based software monitoring: a
systematic mapping study
Jeanderson Cândido1,2, Maurício Aniche1 and Arie van Deursen1

1 Department of Software Technology, Delft University of Technology, Delft, Netherlands
2 Adyen N.V., Amsterdam, Netherlands

ABSTRACT
Modern software development and operations rely on monitoring to understand
how systems behave in production. The data provided by application logs and
runtime environment are essential to detect and diagnose undesired behavior and
improve system reliability. However, despite the rich ecosystem around industry-
ready log solutions, monitoring complex systems and getting insights from log data
remains a challenge. Researchers and practitioners have been actively working to
address several challenges related to logs, e.g., how to effectively provide better
tooling support for logging decisions to developers, how to effectively process and
store log data, and how to extract insights from log data. A holistic view of the
research effort on logging practices and automated log analysis is key to provide
directions and disseminate the state-of-the-art for technology transfer. In this paper,
we study 108 papers (72 research track papers, 24 journals, and 12 industry track
papers) from different communities (e.g., machine learning, software engineering,
and systems) and structure the research field in light of the life-cycle of log data.
Our analysis shows that (1) logging is challenging not only in open-source projects
but also in industry, (2) machine learning is a promising approach to enable a
contextual analysis of source code for log recommendation but further investigation
is required to assess the usability of those tools in practice, (3) few studies approached
efficient persistence of log data, and (4) there are open opportunities to analyze
application logs and to evaluate state-of-the-art log analysis techniques in a DevOps
context.

Subjects Emerging Technologies, Software Engineering
Keywords Logging practices, Log infrastructure, Log analysis, DevOps, Monitoring

INTRODUCTION
Software systems are everywhere and play an important role in society and economy.
Failures in those systems may harm entire businesses and cause unrecoverable loss in the
worst case. For instance, in 2018, a supermarket chain in Australia remained closed
nationwide for 3 h due to “minor IT problems” in their checkout system (Chung, 2018).
More recently, in 2019, a misconfiguration and a bug in a data center management system
caused a worldwide outage in the Google Cloud platform, affecting not only Google’s
services, but also businesses that use their platform as a service, e.g., Shopify and Snapchat
(Wired, 2019; Google, 2019).

While software testing plays an important role in preventing failures and assessing
reliability, developers and operations teams rely on monitoring to understand how the

How to cite this article Cândido J, Aniche M, van Deursen A. 2021. Log-based software monitoring: a systematic mapping study. PeerJ
Comput. Sci. 7:e489 DOI 10.7717/peerj-cs.489

Submitted 20 November 2020
Accepted 22 March 2021
Published 6 May 2021

Corresponding author
Jeanderson Cândido,
j.candido@tudelft.nl

Academic editor
Marieke Huisman

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.489

Copyright
2021 Cândido et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.489
mailto:j.�candido@�tudelft.�nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.489
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

www.manaraa.com

system behaves in production. In fact, the symbiosis between development and operations
resulted in a mix known as DevOps (Bass, Weber & Zhu, 2015; Dyck, Penners & Lichter,
2015; Roche, 2013), where both roles work in a continuous cycle. In addition, given the rich
nature of data produced by large-scale systems in production and the popularization of
machine learning, there is an increasingly trend to adopt artificial intelligence to automate
operations. Gartner (2019) refers to this movement as AIOps and also highlights
companies providing automated operations as a service. Unsurprisingly, the demand to
analyze operations data fostered the creation of a multi-million dollar business
(TechCrunch, 2017, Investor’s Business Daily, 2018) and plethora of open-source and
commercial tools to process and manage log data. For instance, the Elastic stack
(https://www.elastic.co/what-is/elk-stack) (a.k.a. “ELK” stack) is a popular option to collect,
process, and analyze log data (possibly from different sources) in a centralized manner.

Figure 1 provides an overview about how the life-cycle of log data relates to different
stages of the development cycle. First, the developer instruments the source with API
calls to a logging framework (e.g., SLF4J or Log4J) to record events about the internal
state of the system (in this case, whenever the reference “ data ” is “null”). Once the system
is live in production, it generates data continuously whenever the execution flow reaches
the log statements. The data provided by application logs (i.e., data generated from API
calls of logging frameworks) and runtime environments (e.g., CPU and disk usage) are
essential to detect and diagnose undesired behavior and improve software reliability. In
practice, companies rely on a logging infrastructure to process and manage that data.
In the context of the Elastic stack, possible components would be Elasticsearch
(https://www.elastic.co/elasticsearch/), Logstash (https://www.elastic.co/logstash) and
Kibana (https://www.elastic.co/kibana): Logstash is a log processor tool with several
plugins available to parse and extract log data, Kibana provides an interface for
visualization, query, and exploration of log data, and Elasticsearch, the core component of
the Elastic stack, is a distributed and fault-tolerant search engine built on top of Apache
Lucene (https://lucene.apache.org). Variants of those components from other vendors include
Grafana (https://grafana.com) for user interface and Fluentd (https://www.fluentd.org) for log

Log Infrastructure

Log Analysis

Log
ProcessorRunning Application

Build and Deployment …
…

…

Log data

log

generation

Execution Environment

Source code

logtransmission

Storage

OPs EngineerLogging

Dashboards

Developer

…

…

Query

…
…

Figure 1 Overview of the life-cyle of log data. Full-size DOI: 10.7717/peerj-cs.489/fig-1

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 2/38

https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/elasticsearch/
https://www.elastic.co/logstash
https://www.elastic.co/kibana
https://lucene.apache.org
https://grafana.com
https://www.fluentd.org
http://dx.doi.org/10.7717/peerj-cs.489/fig-1
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

processing. Once the data is available, operations engineers use dashboards to analyze trends
and query the data (“Log Analysis”).

Unfortunately, despite the rich ecosystem around industry-ready log solutions,
monitoring complex systems and getting insights from log data is challenging. For
instance, developers need to make several decisions that affect the quality and usefulness of
log data, e.g., where to place log statements and what information should be included in the
log message. In addition, log data can be voluminous and heterogeneous due to how
individual developers instrument an application and also the variety in a software stack
that compose a system. Those characteristics of log data make it exceedingly hard to
make optimal use of log data at scale. In addition, companies need to consider privacy,
retention policies, and how to effectively get value from data. Even with the support of
machine learning and growing adoption of big data platforms, it is challenging to process
and analyze data in a costly and timely manner.

The research community, including practitioners, have been actively working to address
the challenges related to the typical life-cycle of log, i.e., how to effectively provide
better tooling support for logging decisions to developers (“Logging”), how to effectively
process and store log data (“Logging Infrastructure”), and how to extract insights from log
data (“Log Analysis”). Previously, Rong et al. (2017) conducted a survey involving 41
primary studies to understand what was the current state of logging practices. They
focused their analysis on studies addressing development practices of logging. El-Masri
et al. (2020) conducted an in-depth analysis of 11 log parsing (referred as “log abstraction”)
techniques and proposed a quality model based on a survey of 89 primary studies on log
analysis and parsing. While these are useful, no overview exists that includes other
important facets of log analysis (e.g., log analysis for quality assurance), connects the
different log-related areas, and identifies the most pressing open challenges. This
in-breadth knowledge is key not only to provide directions to the research community
but also to bridge the gap between the different research areas, and to summarize the
literature for easy access to practitioners.

In this paper, we propose a systematic mapping of the logging research area. To that
aim, we study 108 papers that appeared in top-level peer-reviewed conferences and
journals from different communities (e.g., machine learning, software engineering, and
systems). We structure the research field in light of the life-cycle of log data, elaborate the
focus of each research area, and discuss opportunities and directions for future work.
Our analysis shows that (1) logging is a challenge not only in open-source projects but also
in industry, (2) machine learning is a promising approach to enable contextual analysis of
source code for log recommendations but further investigation is required to assess the
usability of those tools in practice, (3) few studies address efficient persistence of log data,
and (4) while log analysis is mature field with several applications (e.g., quality assurance
and failure prediction), there are open opportunities to analyze application logs and to
evaluate state-of-the-art techniques in a DevOps context.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 3/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

SURVEY METHODOLOGY
The goal of this paper is to discover, categorize, and summarize the key research results in
log-based software monitoring. To this end, we perform a systematic mapping study to
provide a holistic view of the literature in logging and automated log analysis. Concretely,
we investigate the following research questions:

� RQ1:What are the publication trends in research on log-based monitoring over the years?

� RQ2: What are the different research scopes of log-based monitoring?

The first research question (RQ1) addresses the historical growth of the research field.
Answering this research question enables us to identify the popular venues and the
communities (e.g., Software Engineering, Distributed Systems) that have been focusing
on log-based monitoring innovation. Furthermore, we aim at investigating the participation
of industry in the research field. Researchers can benefit from our analysis by helping them to
make a more informed decision regarding venues for paper submission. In addition, our
analysis also serves as a guide to practitioners willing to engage with the research community
either by attending conferences or looking for references to study and experiment. The
second research question (RQ2) addresses the actual mapping of the primary studies.
As illustrated in Fig. 1, the life-cycle of log data contains different inter-connected contexts
(i.e., “Logging”, “Log Infrastructure”, and “Log Analysis”) with their own challenges and
concerns that span the entire development cycle. Answering this research question enables
us to identify those concerns for each context and quantify the research effort by the number
of primary studies in a particular category. In addition, we aim at providing an overview
of the studies so practitioners and researchers are able to use our mapping study as a starting
point for an in-depth analysis of a particular topic of interest.

Overall, we follow the standard guidelines for systematic mapping (Petersen et al., 2008).
Our survey methodology is divided into four parts as illustrated in Fig. 2. First, we perform
preliminary searches to derive our search criteria and build an initial list of potential
relevant studies based on five data sources. Next, we apply our inclusion/exclusion criteria
to arrive at the eventual list of selected papers up to 2018 (when we first conducted the
survey). We then conduct the data extraction and classification procedures. Finally, we
update the results of our survey to include papers published in 2019.

Search Process Study Selection

search Data
sources

Query
strings

earch Proce
refinement

Google Scholar,
ACM, IEEE,
Scopus, Springer

Data
urces

Initial list
(4,187)

Selection
(96)

t SPreliminary list
(315)

step 1

selection criteria

step 2

rank criteria

Classification
Schema

sort

n Abstracts Papers

keyw
ording update

Classification

step 1

Survey Update

s '18 Papers
(11)

'19 Papers
(12)

fwd. snowballing

Figure 2 Overview of survey methodology: our four steps consists of the discovery of related studies (“Search Process”), the selection of
relevant studies (“Study Selection”), the mapping process (“Classification”), and the update for papers published in 2019 (“Survey
Update”). Full-size DOI: 10.7717/peerj-cs.489/fig-2

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 4/38

http://dx.doi.org/10.7717/peerj-cs.489/fig-2
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Data sources and search process
To conduct our study, we considered five popular digital libraries from different publishers
based on other literature reviews in software engineering, namely, ACM Digital Library,
IEEE Xplore, SpringerLink, Scopus, and Google Scholar. By considering five digital
libraries, we maximize the range of venues and increase the diversity of studies related
to logging. In addition, this decision reduces the bias caused by the underlying search
engine since two digital libraries may rank the results in a different way for the same
equivalent search.

We aim to discover relevant papers from different areas as much as possible. However,
it is a challenge to build an effective query for the five selected digital libraries without
dealing with a massive amount of unrelated results, since terms such as “log” and “log
analysis” are pervasive in many areas. Conversely, inflating the search query with
specific terms to reduce false positives would bias our study to a specific context (e.g., log
analysis for debugging). To find a balance between those cases, we conducted preliminary
searches with different terms and search scopes, e.g., full text, title, and abstract. We
considered terms based on “log”, its synonyms, and activities related to log analysis.
During this process, we observed that forcing the presence of the term “log” helps to order
relevant studies on the first pages. In case the data source is unable to handle word
stemming automatically (e.g., “log” and “logging”), we enhance the query with the
keywords variations. In addition, configured the data sources to search on titles and
abstracts whenever it was possible. In case the data source provides no support to search on
titles and abstracts, we considered only titles to reduce false positives. This process resulted
in the following search query:

log AND (trace OR event OR software OR system OR code OR detect OR mining OR
analysis OR monitoring OR web OR technique OR develop OR pattern OR practice)

Dealing with multiple libraries requires additional work to merge data and remove
duplicates. In some cases, the underlying information retrieval algorithms yielded
unexpected results when querying some libraries, such as duplicates within the data source
and entries that mismatch the search constraints. To overcome those barriers, we
implemented auxiliary scripts to cleanup the dataset. We index the entries by title to
eliminate duplicates, and we remove entries that fail to match the search criteria.
Furthermore, we keep the most recent work when we identify two entries with the same
title and different publication date (e.g., journal extension from previous work).

As of December of 2018, when we first conducted this search, we extracted 992 entries
from Google Scholar, 1,122 entries from ACM Digital Library, 1,900 entries from IEEE
Xplore, 2,588 entries from Scopus, and 7,895 entries from SpringerLink (total of 14,497
entries). After merging and cleaning the data, we ended up with 4,187 papers in our initial
list.

Study selection
We conduct the selection process by assessing the 4,187 entries according to inclusion/
exclusion criteria and by selecting publications from highly ranked venues. We define the
criteria as follows:

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 5/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

� C1: It is an English manuscript.

� C2: It is a primary study.

� C3: It is a full research paper accepted through peer-review.

� C4: The paper uses the term “log” in a software engineering context, i.e., logs to describe
the behavior of a software system. We exclude papers that use the term “log” in an
unrelated semantic (e.g., deforestation, life logging, well logging, log function).

The rationale for criterion C1 is that major venues use English as the standard idiom for
submission. The rationale for criterion C2 is to avoid including secondary studies in our
mapping, as suggested by Kitchenham & Charters (2007). In addition, the process of
applying this criterion allows us to identify other systematic mappings and systematic
literature reviews related to ours. The rationale for criterion C3 is that some databases
return gray literature as well as short papers; our focus is on full peer-reviewed research
papers, which we consider mature research, ready for real-world tests. Note that different
venues might have different page number specifications to determine whether a
submission is a full or short paper, and these specifications might change over time.
We consulted the page number from each venue to avoid unfair exclusion. The rationale
for criterion C4 is to exclude papers that are unrelated to the scope of this mapping
study. We noticed that some of the results are in the context of, e.g., mathematics and
environmental studies. While we could have tweaked our search criteria to minimize
the occurrence of those false positives (e.g., NOT deforestation), we were unable to
systematically derive all keywords to exclude; therefore, we favored higher false positive
rate in exchange of increasing the chances of discovering relevant papers.

The first author manually performed the inclusion procedure. He analyzed the title and
abstracts of all the papers marking the paper as “in” or “out”. During this process, the
author applied the criteria and categorized the reasons for exclusion. For instance,
whenever an entry fails the criteria C4, the authors classified it as “Out of Scope”. The
categories we used are: “Out of Scope”, “Short/workshop paper”, “Not a research paper”,
“Unpublished” (e.g., unpublished self-archived paper indexed by Google Scholar),
“Secondary study”, and “Non-English manuscript”. It is worth mentioning that we flagged
three entries as “Duplicate” as our merging step missed these cases due to special
characters in the title. After applying the selection criteria, we removed 3,872 entries
resulting in 315 entries.

In order to filter the remaining 315 papers by rank, we used the CORE Conference
Rank (CORE Rank) (http://www.core.edu.au/conference-portal) as a reference. We
considered studies published only in venues ranked as A* or A. According to the CORE
Rank, those categories indicate that the venue is widely known in the computer science
community and has a strict review process by experienced researches. After applying the
rank criteria, we removed 219 papers.

Our selection consists of (315 − 219 =) 96 papers after applying inclusion/exclusion
criteria (step 1) and filtering by venue rank (step 2). Table 1 summarises the selection
process.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 6/38

http://www.core.edu.au/conference-portal
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Data extraction and classification
We focus the data extraction process to the required data to answer our research
questions.

To answer RQ1, we collect metadata from the papers and their related venues.
Concretely, we define the following schema: “Year of publication”, “Type of publication”,
“Venue name”, and “Research community”. The fields “Year of publication” and
“Venue name” are readly available on the scrapped data from the data sources. To extract
the field “Type of publication”, we automatically assign the label “journal” if it is a
journal paper. For conference papers, we manually check the proceedings to determine
if it is a “research track” or “industry track” paper (we assume “research track” if not
explicitly stated). To extract the field “Research community”, we check the topics of
interest from the conferences and journals. This information is usually available in a “call
for papers” page. Later, we manually aggregate the venues and we merge closely related
topics (e.g., Artificial Intelligence, Machine Learning, and Data Science). While a

Table 1 Distribution of study selection when the survey was first conducted.

Selection Step Qty

Step 1. Exclusion by selection criteria 3,872

Out of scope (failed C4) 3,544

Short/workshop paper (failed C3) 276

Not a research paper (failed C3) 40

Non-English manuscript (failed C1) 4

Unpublished (failed C3) 3

Duplicate 3

Secondary study (failed C2) 2

Preliminary inclusion of papers 315

Step 2. Exclusion by venue rank (neither A* nor A) 219

Unranked 143

Rank B 47

Rank C 30

Inclusion of papers (up to 2018, inclusive) 96

extract

Topics of
Interest

Conference
Proceedings

ce
gs

Call for
Papers

Research community

extract

retrieve
extractPrimary

Study

Year of publication

Type of publication

Research track, Industry track, Journal

Venue name
extract

refinement

Figure 3 Data extraction for RQ1. Full-size DOI: 10.7717/peerj-cs.489/fig-3

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 7/38

http://dx.doi.org/10.7717/peerj-cs.489/fig-3
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

complete meta-analysis is out of scope from our study, we believe the extracted data is
sufficient to address the research question. Figure 3 summarizes the process for RQ1.

To answer RQ2, we collect the abstracts from the primary studies. In this process, we
structure the abstract to better identify the motivation of the study, what problem the
authors are addressing, how the researchers are mitigating the problem, and the results of
the study. Given the diverse set of problems and domains, we first group the studies
according to their overall context (e.g., whether the paper relates to “Logging”, “Log
Infrastructure”, or “Log Analysis”). To mitigate self-bias, we conducted two independent
triages and compared our results. In case of divergence, we review the paper in depth to
assign the context that better fits the paper. To derive the classification schemafor each
context, we perform the keywording of abstracts (Petersen et al., 2008). In this process,
we extract keywords in the abstract (or introduction, if necessary) and cluster similar
keywords to create categories. We perform this process using a random sample of papers
to derive an initial classification schema.

Later, with all the papers initially classified, the authors explored the specific objectives
of each paper and review the assigned category. To that aim, the first and second authors
performed card sorting (Spencer & Warfel, 2004; Usability.gov, 2019) to determine the
goal of each of the studied papers. Note that, in case new categories emerge in this process,
we generalize them in either one of the existing categories or enhance our classification
schema to update our view of different objectives in a particular research area. After the
first round of card sorting, we noticed that some of the groups (often the ones with high
number of papers) could be further broken down in subcategories (we discuss the
categories and related subcategories in the Results section).

The first author conducted two separate blinded classifications on different periods of
time to measure the degree of adherence to the schema given that classification is subject
of interpretation, and thus, a source of bias. The same outcome converged on 83% of
the cases (80 out of the 96 identified papers). The divergences were then discussed with the
second author of this paper. Furthermore, the second author reviewed the resulting
classification. Note that, while a paper may address more than one category, we choose the

Logging, Log Infrastructure, Log Analysis

clustering
Classification schema

Abstract

extract

Structured
Abstract

Paper contexttriage

extract

Keywords

update

review

Primary
Studies

Figure 4 Data extraction and classification for RQ2. The dashed arrows denote the use of the data
schema by the researchers with the primary studies. Full-size DOI: 10.7717/peerj-cs.489/fig-4

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 8/38

http://dx.doi.org/10.7717/peerj-cs.489/fig-4
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

category related to the most significant contribution of that paper. Figure 4 summarizes the
process for RQ2.

Survey update
As of October of 2020, we updated our survey to include papers published in 2019 since
we first conducted this analysis during December in 2018. To this end, we select all 11
papers from 2018 and perform forward snowballing to fetch a preliminary list of papers
from 2019. We use snowballing for simplicity since we can leverage the “Cited By” feature
from Google Scholar rather than scraping data of all five digital libraries. It is worth
mentioning that we limit the results up to 2019 to avoid incomplete results for 2020.

For the preliminary list of 2019, we apply the same selection and rank criteria
(see Section “Study Selection”); then, we analyze and map the studies according to the
existing classification schema (see Section “Data Extraction and Classification”). In this
process, we identify 12 new papers and merge them with our existing dataset. Our final
dataset consists of (96 + 12 =) 108 papers.

RESULTS
Publication trends (RQ1)
Figure 5 highlights the growth of publication from 1992 to 2019. The interest on logging
has been continuously increasing since the early 2000’s. During this time span, we
observed the appearance of industry track papers reporting applied research in a real
context. This gives some evidence that the growing interest on the topic attracted not only
researchers from different areas but also companies, fostering the collaboration between
academia and industry.

We identified 108 papers (72 research track papers, 24 journals, and 12 industry track
papers) published in 46 highly ranked venues spanning different communities (Table 2).
Table 2 highlights the distribution of venues grouped by the research community,
e.g., there are 44 papers published on 10 Software Engineering venues.

1 1 1
2

1

2

1

1 1
3

1
1

5

1

6

3

1
5

2

4

2
8

1

4

2

2

6

1

3

6

5

2

5

5

1

8

3

1

'92 '98 '07'03 '04 '05 '06 '08 '10'09 '12'11 '13 '15 '16'14 '18'00 '17 '19
Year

Publication Type

industry track paper

journal

research track paper

Figure 5 Growth of publication types over the years. Labels indicate the number of publication per
type in a specific year. There are 108 papers in total. Full-size DOI: 10.7717/peerj-cs.489/fig-5

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 9/38

http://dx.doi.org/10.7717/peerj-cs.489/fig-5
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Table 3 highlights the most recurring venues in our dataset (we omitted venues with less
than three papers for brevity). The “International Conference on Software Engineering
(ICSE)”, the “Empirical Software Engineering Journal (EMSE)”, and the “International
Conference on Dependable Systems and Networks (DSN)” are the top three recurring
venues related to the subject and are well-established venues. DSN and ICSE are
conferences with more than 40 editions each and EMSE is a journal with an average of
five issues per year since 1996. At a glance, we noticed that papers from DSN have an
emphasis on log analysis of system logs while papers from ICSE and EMSE have an
emphasis on development aspects of logging practices (more details about the research
areas in the next section). Note that Table 3 also concentrates 65% (71 out of 108) of the
primary studies in our dataset.

Overview of research areas (RQ2)
We grouped the studied papers among the following three categories based in our
understanding about the life-cycle of log data (see Fig. 1). For each category, we derived
subcatories that emerged from our keywording process (see Section “Data Extraction and
Classification”):

� LOGGING: Research in this category aims at understanding how developers conduct
logging practices and providing better tooling support to developers. There are
three subcategories in this line of work: (1) empirical studies on logging practices,
(2) requirements for application logs, and (3) implementation of log statements
(e.g., where and how to log).

� LOG INFRASTRUCTURE: Research in this category aims at improving log processing and
persistence. There are two subcategories in this line of work: (1) log parsing, and (2) log
storage.

� LOG ANALYSIS: Research in this category aims at extracting knowledge from log data.
There are eight subcategories in this line of work: (1) anomaly detection, (2) security and
privacy, (3) root cause analysis, (4) failure prediction, (5) quality assurance, (6) model
inference and invariant mining, (7) reliability and dependability, and (8) log platforms.

Table 2 Distribution of venues and publications grouped by research communities.

Research community # of venues # of papers

Software Engineering 10 44

Distributed Systems and Cloud Computing 10 20

Systems 9 17

Artificial Intelligence, Machine Learning, and Data Science (AI) 8 13

Security 5 7

Information Systems 3 6

Databases 1 1

Total 46 108

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 10/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

We provide an overview of the categories, their respective descriptions, and summary of
our results in Table 4. In summary, we observed that LOG ANALYSIS dominates most of the
research effort (68 out of 108 papers) with papers published since the early 90’s. LOG
INFRASTRUCTURE is younger than LOG ANALYSIS as we observed papers starting from 2007
(16 out of 108 papers). LOGGING is the youngest area of interest with an increasing
momentum for research (24 out of 108 papers). In the following, we elaborate our analysis
and provide an overview of the primary studies.

Logging
Log messages are usually in the form of free text and may expose parts of the system
state (e.g., exceptions and variable values) to provide additional context. The full log
statement also includes a severity level to indicate the purpose of that statement. Logging

Table 3 Top recurring venues ordered by number of papers. There are 14 (out of 46) recurring venues with at least three papers published
(omitted venues with less than three papers for brevity).

Venue (acronym) References Qty

International Conference on Software Engineering
(ICSE)

Andrews & Zhang (2003), Yuan, Park & Zhou (2012), Beschastnikh et al. (2014), Fu et al.
(2014a), Pecchia et al. (2015), Zhu et al. (2015), Lin et al. (2016), Chen & Jiang (2017a), Li
et al. (2019b), Zhu et al. (2019)

10

Empirical Software Engineering Journal (EMSE) Huynh & Miller (2009), Shang, Nagappan & Hassan (2015), Russo, Succi & Pedrycz (2015),
Chen & Jiang (2017b), Li, Shang & Hassan (2017), Hassani et al. (2018), Li et al. (2018),
Zeng et al. (2019), Li et al. (2019a)

9

IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN)

Oliner & Stearley (2007), Lim, Singh & Yajnik (2008), Cinque et al. (2010), Di Martino,
Cinque & Cotroneo (2012), El-Sayed & Schroeder (2013), Oprea et al. (2015), He et al.
(2016a), Neves, Machado & Pereira (2018)

8

International Symposium on Software Reliability
Engineering (ISSRE)

Tang & Iyer (1992),Mariani & Pastore (2008), Banerjee, Srikanth & Cukic (2010), Pecchia &
Russo (2012), Farshchi et al. (2015), He et al. (2016b), Bertero et al. (2017)

7

International Conference on Automated Software
Engineering (ASE)

Andrews (1998), Chen et al. (2018), He et al. (2018a), Ren et al. (2019), Liu et al. (2019a) 5

International Symposium on Reliable Distributed
Systems (SRDS)

Zhou et al. (2010), Kc & Gu (2011), Fu et al. (2012), Chuah et al. (2013), Gurumdimma et al.
(2016)

5

ACM International Conference on Knowledge
Discovery and Data Mining (KDD)

Makanju, Zincir-Heywood & Milios (2009), Nandi et al. (2016),Wu, Anchuri & Li (2017), Li
et al. (2017)

4

IEEE International Symposium on Cluster, Cloud
and Grid Computing (CCGrid)

Prewett (2005), Yoon & Squicciarini (2014), Lin et al. (2015), Di et al. (2017) 4

IEEE Transactions on Software Engineering (TSE) Andrews & Zhang (2003), Tian, Rudraraju & Li (2004), Cinque, Cotroneo & Pecchia (2013),
Liu et al. (2019b)

4

Annual Computer Security Applications
Conference (ACSAC)

Abad et al. (2003), Barse & Jonsson (2004), Yen et al. (2013) 3

IBM Journal of Research and Development Aharoni et al. (2011), Ramakrishna et al. (2017), Wang et al. (2017) 3

International Conference on Software
Maintenance and Evolution (ICSME)

Shang et al. (2014), Zhi et al. (2019), Anu et al. (2019) 3

IEEE International Conference on Data Mining
(ICDM)

Fu et al. (2009), Xu et al. (2009a), Tang & Li (2010) 3

Journal of Systems and Software (JSS) Mavridis & Karatza (2017), Bao et al. (2018), Farshchi et al. (2018) 3

Total 71

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 11/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

frameworks provide developers with different log levels: debug for low level logging, info to
provide information on the system execution, error to indicate unexpected state that
may compromise the normal execution of the application, and fatal to indicate a severe
state that might terminate the execution of the application. Logging an application involves

Table 4 Summary of our mapping study. The 108 papers are grouped into three main research areas, and each area has subcategories according to
the focus of the study.

Category Description Papers Qty

Logging: The development of effective logging code 24

Empirical Studies Understanding and insights about how
developers conduct logging in general

Yuan, Park & Zhou (2012), Chen & Jiang (2017b), Shang et al. (2014), Shang,
Nagappan & Hassan (2015), Pecchia et al. (2015), Kabinna et al. (2016), Li
et al. (2019b), Zeng et al. (2019)

8

Log requirements Assessment of log conformance given a
known requirement

Cinque et al. (2010), Pecchia & Russo (2012), Cinque, Cotroneo & Pecchia
(2013), Yuan et al. (2012), da Cruz et al. (2004)

5

Implementation of
log statements

Focus on what to log, where to log, and
how to log

Chen & Jiang (2017a), Hassani et al. (2018), Fu et al. (2014a), Zhu et al. (2015),
Li et al. (2018), Li, Shang & Hassan (2017), He et al. (2018a), Li et al. (2019a),
Liu et al. (2019b), Anu et al. (2019), Zhi et al. (2019)

11

Log Infrastructure: Techniques to enable and fulfil the requirements of the analysis process 16

Parsing Extraction of log templates from raw log
data

Aharon et al. (2009), Makanju, Zincir-Heywood & Milios (2009), Makanju,
Zincir-Heywood & Milios (2012), Liang et al. (2007), Gainaru et al. (2011),
Hamooni et al. (2016), Zhou et al. (2010), Lin et al. (2016), Tang & Li (2010),
He et al. (2016a), He et al. (2018b), Zhu et al. (2019), Agrawal, Karlupia &
Gupta (2019)

13

Storage Efficient persistence of large datasets of
logs

Lin et al. (2015), Mavridis & Karatza (2017), Liu et al. (2019a) 3

Log Analysis: Insights from processed log data 68

Anomaly detection Detection of abnormal behaviour Tang & Iyer (1992), Oliner & Stearley (2007), Lim, Singh & Yajnik (2008), Xu
et al. (2009b), Xu et al. (2009a), Fu et al. (2009), Ghanbari, Hashemi & Amza
(2014), Gao et al. (2014), Juvonen, Sipola & Hämäläinen (2015), Farshchi et al.
(2015), He et al. (2016b), Nandi et al. (2016), Du et al. (2017), Bertero et al.
(2017), Lu et al. (2017), Debnath et al. (2018), Bao et al. (2018), Farshchi et al.
(2018), Zhang et al. (2019), Meng et al. (2019)

20

Security and
privacy

Intrusion and attack detection Oprea et al. (2015), Chu et al. (2012), Yoon & Squicciarini (2014), Yen et al.
(2013), Barse & Jonsson (2004), Abad et al. (2003), Prewett (2005), Butin & Le
Métayer (2014), Goncalves, Bota & Correia (2015)

9

Root cause analysis Accurate failure identification and
impact analysis

Gurumdimma et al. (2016), Kimura et al. (2014), Pi et al. (2018), Chuah et al.
(2013), Zheng et al. (2011), Ren et al. (2019)

6

Failure prediction Anticipating failures that leads a system
to an unrecoverable state

Wang et al. (2017), Fu et al. (2014b), Russo, Succi & Pedrycz (2015), Khatuya
et al. (2018), Shalan & Zulkernine (2013), Fu et al. (2012)

6

Quality assurance Logs as support for quality assurance
activities

Andrews (1998), Andrews & Zhang (2000), Andrews & Zhang (2003), Chen et al.
(2018)

4

Model inference
and invariant
mining

Model and invariant checking Ulrich et al. (2003), Mariani & Pastore (2008), Tan et al. (2010), Beschastnikh
et al. (2014), Wu, Anchuri & Li (2017), Awad & Menasce (2016), Kc & Gu
(2011), Lou et al. (2010), Steinle et al. (2006), Di Martino, Cinque & Cotroneo
(2012)

10

Reliability and
dependability

Understand dependability properties of
systems (e.g., reliability, performance)

Banerjee, Srikanth & Cukic (2010), Tian, Rudraraju & Li (2004), Huynh &
Miller (2009), El-Sayed & Schroeder (2013), Ramakrishna et al. (2017), Park
et al. (2017)

6

Log platforms Full-fledged log analysis platforms Li et al. (2017), Aharoni et al. (2011), Yu et al. (2016), Balliu et al. (2015),Di et al.
(2017), Neves, Machado & Pereira (2018), Gunter et al. (2007)

7

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 12/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

several decisions such as what to log. These are all important decisions since they have a
direct impact on the effectiveness of the future analysis. Excessive logging may cause
performance degradation due the number of writing operations and might be costly in
terms of storage. Conversely, insufficient information undermines the usefulness of the
data to the operations team. It is worth mentioning that the underlying environment
also provides valuable data. Environment logs provide insights about resource usage
(e.g., CPU, memory and network) and this data can be correlated with application logs
on the analysis process. In contrast to application logs, developers are often not in control
of environment logs. On the other hand, they are often highly structured and are useful as a
complementary data source that provides additional context.

LOGGING deals with the decisions from the developer’s perspective. Developers have to
decide the placement of log statements, what message description to use, which runtime
information is relevant to log (e.g., the thrown exception), and the appropriate severity
level. Efficient and accurate log analysis rely on the quality of the log data, but it is not
always feasible to know upfront the requirements of log data during development time.

We observed three different subcategories in log engineering: (1) empirical studies on
log engineering practices, (2) techniques to improve log statements based on known
requirements for log data, and (3) techniques to help developers make informed decisions
when implementing log statements (e.g., where and how to log). In the following,
we discuss the 24 log engineering papers in the light of these three types of studies.

Empirical studies
Understanding how practitioners deal with the log engineering process in a real scenario is
key to identify open problems and provide research directions. Papers in this category aim
at addressing this agenda through empirical studies in open-source projects (and their
communities).

Yuan, Park & Zhou (2012) conducted the first empirical study focused on
understanding logging practices. They investigated the pervasiveness of logging, the
benefits of logging, and how log-related code changes over time in four open-source
projects (Apache httpd, OpenSSH, PostgresSQL, and Squid). In summary, while logging
was widely adopted in the projects and were beneficial for failure diagnosis, they show that
logging as a practice relies on the developer’s experience. Most of the recurring changes
were updates to the content of the log statement.

Later, Chen & Jiang (2017b) conducted a replication study with a broader corpus: 21
Java-based projects from the Apache Foundation. Both studies confirm that logging code is
actively maintained and that log changes are recurrent; however, the presence of log data in
bug reports are not necessarily correlated to the resolution time of bug fixes (Chen & Jiang,
2017b). This is understandable as resolution time also relates to the complexity of the
reported issue.

It is worth mentioning that the need for tooling support for logging also applies in an
industry setting. For instance, in a study conducted by Pecchia et al. (2015), they show that
the lack of format conventions in log messages, while not severe for manual analysis,
undermines the use of automatic analysis. They suggest that a tool to detect inconsistent

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 13/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

conventions would be helpful for promptly fixes. In a different study, Zhi et al. (2019)
analyses log configurations on 10 open-source projects and 10 Alibaba systems. They show
that developers often rely on logging configurations to control the throughput of data
and quality of data (e.g., suppressing inconvenient logs generated from external
dependencies, changing the layout format of the recorded events) but finding optimal
settings is challenging (observed as recurrent changes on development history).

In the context of mobile development, Zeng et al. (2019) show that logging practices are
different but developers still struggle with inconsistent logging. They observed a lower
density of log statements compared to previous studies focused on server and desktop
systems (Chen & Jiang, 2017b; Yuan, Park & Zhou, 2012) by analyzing +1.4K Android
apps hosted on F-Droid. Logging practices in mobile development differ mainly because
developers need to consider the overhead impact on user’s device. The authors observed
a statistically significant difference in terms of response time, battery consumption, and
CPU when evaluating eight apps with logging enabled and disabled.

Understanding the meaning of logs is important not only for analysis but also for
maintenance of logging code. However, one challenge that developers face is to actively
update log-related code along functionalities. The code base naturally evolves but due to
unawareness on how features are related to log statements, the latter become outdated
and may produce misleading information (Yuan, Park & Zhou, 2012; Chen & Jiang,
2017b). This is particularly problematic when the system is in production and developers
need to react for user inquiries. In this context, Shang et al. (2014) manually analyzed
mailing lists and sampled log statements from three open-source projects (Apache
Hadoop, Zookeper, and Cassandra) to understand how practitioners and customers
perceive log data. They highlight that common inquiries about log data relate to the
meaning, the cause, the context (e.g., in which cases a particular message appears in the log
files), the implications of a message, and solutions to manifested problems.

In a different study, Shang, Nagappan & Hassan (2015) investigated the relationship
between logging code and the overall quality of the system though a case study on four
releases from Apache Hadoop and JBoss. They show that the presence of log statements
are correlated to unstable source files and are strong indicators of defect-prone features.
In other words, classes that are more prone to defects often contain more logs.

Finally, Kabinna et al. (2016) explored the reasons and the challenges of migrating to a
different logging library. The authors noticed that developers have different drivers for
such a refactoring, e.g., to increase flexibility, performance, and to reduce maintenance
effort. Interestingly, the authors also observed that most projects suffer from post-
migration bugs because of the new logging library, and that migration rarely improved
performance.

Log requirements
An important requirement of log data is that it must be informative and useful to a
particular purpose. Papers in this subcategory aim at evaluating whether log statements
can deliver expected data, given a known requirement.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 14/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Fault injection is a technique that can be useful to assess the diagnosibility of log data,
i.e., whether log data can manifest the presence of failures. Past studies conducted
experiments in open-source projects and show that logs are unable to produce any trace of
failures in most cases (Cinque et al., 2010; Pecchia & Russo, 2012; Cinque, Cotroneo &
Pecchia, 2013). The idea is to introduce faults in the system under test, run tests (these have
to manifest failures), and compare the log data before and after the experiment.
Examples of introduced faults are missing method calls and missing variable assignment.
The authors suggest the usage of fault injection as a guideline to identify and add missing
log statements.

Another approach to address the diagnosability in log data was proposed by Yuan et al.
(2012). LOGENHANCER leverages program analysis techniques to capture additional context
to enhance log statements in the execution flow. Differently from past work with fault
injection, LOGENHANCER proposes the enhancement of existing log statements rather than
addition of log statements in missing locations.

In the context of web services, da Cruz et al. (2004) already explored the idea of
enhancing log data. An interesting remark pointed by the authors is that, in the context of
complex system with third-party libraries, there is no ownership about the format and
content of log statements. This is an issue if the log data generated is inappropriate and
requires changes (as observed by Zhi et al. (2019)). To overcome this issue, they propose
WSLOG A, a logging framework based on SOAP intermediaries that intercepts messages
exchanged between client and server and enhances web logs with important data for
monitoring and auditing, e.g., response and processing time.

Implementation of log statements
Developers need to make several decisions at development time that influence the quality
of the generated log data. Past studies in logging practices show that in practice, developers
rely on their own experience and logging is conducted in a trial-and-error manner in
open-source projects (Yuan, Park & Zhou, 2012; Chen & Jiang, 2017b) and industry
(Pecchia et al., 2015). Papers in this subcategory aim at studying logging decisions,
i.e., where to place log statements, which log level to use, and how to write log messages.

Hassani et al. (2018) proposed a set of checkers based in an empirical study of log-
related changes in two open-source projects (Apache Hadoop and Apache Camel). They
observed that typos in log messages, missing guards (i.e., conditional execution of log
statement according to the appropriate level), and missing exception-related logging
(e.g., unlogged exception or missing the exception in a log statement) are common causes
for code changes. Li et al. (2019a) also analyze log changes across several revisions on
12 C/C++ open-source projects. However, they mine rules based on the type of
modification (e.g., update on log descriptor) and contextual characteristics from the
revision. The rational is that new code changes with similar contextual characteristics
should have similar type of log modification. The authors proposed this method in the
form of a tool named LOGTRACKER. In another study, Chen & Jiang (2017a) analyzed 352
pairs of log-related changes from ActiveMQ, Hadoop, and Maven (all Apache projects),
and proposed LCANALYZER, a checker that encodes the anti-patterns identified on their

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 15/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

analysis. Some of these patterns are usage of nullable references, explicit type cast, and
malformed output (e.g., referencing data types without user-friendly string representation)
in the log statement. Li et al. (2019b) addressed additional anti-patterns caused mainly
by improper copy-and-paste, e.g., same log statement reused on different catch blocks.
They derived five duplication anti-patterns by studying 3K duplicated log statements on
Hadoop, ElasticSearch, CloudStack, and Cassandra, and encoded those anti-patterns in a
checker named DLFINDER. On the evaluation, they discovered not only new issues on the
analyzed systems but also on other two systems (Camel and Wicket). Note that several
recurrent problems aforementioned can be capture by static analysis before merging
changes into the code base.

Deciding where to place log statements is critical to provide enough context for
later analysis. One way to identify missing locations is to use fault injection (see “Log
Requirements”). However, the effectiveness of that approach is limited to the quality of
tests and the ability of manifesting failures. Furthermore, log placement requires further
contextual information that is unfeasible to capture only with static analysis. Another
approach to address consistent log placement in large code bases is to leverage source code
analysis and statistical models to mine log patterns. Fu et al. (2014a) conducted an
empirical study in two Microsoft C# systems and proposed five classifications for log
placement: three for unexpected situations and two for regular monitoring. Unexpected
situations cover log statements triggered by failed assertions (“assertion logging”),
exception handling or throw statements (“exception logging”), and return of unexpected
values after a checking condition (“return-value-check logging”). Regular monitoring
cover the remaining cases of log statements that can be in logic branches (“logic-branch
logging”) or not (“observing-point logging”). Later, Zhu et al. (2015) proposed
LOGADVISOR, a technique that leverages supervised learning with feature engineering to
suggest log placement for unexpected situations, namely catch blocks (“exception
logging”) and if blocks with return statements (“return-value-check logging”). Some of
the features defined for the machine learning process are size of the method, i.e., number of
lines of source code, name of method parameters, name of local variables, and method
signature. They evaluated LOGADVISOR on two proprietary systems from Microsoft and
two open-source projects hosted on GitHub. The results indicate the feasibility of applying
machine learning to provide recommendations for where to place new log statements.
Li et al. (2018) approached the placement problem by correlating the presence of logging
code with the context of the source code. The rationale is that some contexts (defined
through topic models) are more likely to contain log statements (e.g., network or database
operations) than others (e.g., getter methods). In this work, the authors analyze log
placement at method level rather than block-level as in previous work (Fu et al., 2014a;
Zhu et al., 2015).

Choosing the appropriate severity level of log statements is a challenge. Recall that
logging frameworks provide the feature of suppressing log messages according to the log
severity. Li, Shang & Hassan (2017) proposed a machine learning-based technique to
suggest the log level of a new log statement. The underlying model uses ordinal regression,
which is useful to predict classes, i.e., log level, but taking into account their severity order,

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 16/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

e.g., info < warning < error. Their technique provides better accuracy than random
guessing and guessing based on the distribution of log levels in the source code. They
report that the log message and the surrounding context of the log statement are good
predictors of the log level. It is worth mentioned that Hassani et al. (2018) also addressed
the problem of identifying appropriate log level in their study on log-related changes by
examining the entropy of log messages and log levels. The underlying idea is that log levels
that are commonly associated with a log message also should be used on other log
statements with similar log messages. While this approach is intuitive and precise, the
authors report low recall. Both studies highlight the relationship of the log message and
associate severity of a log statement. In another study, Anu et al. (2019) also proposes a
classifier for log level recommendation. They focus on log statements located on if-else
blocks and exception handling. In terms of feature engineering, the authors leverage
mostly the terms associated in the code snippet (e.g., log message, code comments, and
method calls) while Li, Shang & Hassan (2017) use quantitative metrics extracted from
code (e.g., length of log message and code complexity). However it remains open how both
techniques compare in terms of performance.

An important part of log statements is the description of the event being logged.
Inappropriate descriptions are problematic and delay the analysis process.He et al. (2018a)
conducted an empirical study focused on what developers log. They analyzed 17 projects
(10 in Java and 7 in C#) and concluded that log descriptors are repetitive and small in
vocabulary. For this reason, they suggest that it is feasible to exploit information retrieval
methods to automatically generate log descriptions.

In addition to log descriptors, the state of the system is another important information
the event being logged. Liu et al. (2019b) proposed a machine learning-based approach
to aid developers about which variables to log based on the patterns of existing log
statements. The technique consists of four layers: embedding, Recurrent Neural Network
(RNN), self-attention mechanism, and output. Results indicate better performance than
random guess and information retrieve approaches on the evaluation of nine Java projects.

Log infrastructure
The infrastructure supporting the analysis process plays an important role because
the analysis may involve the aggregation and selection of high volumes of data.
The requirements for the data processing infrastructure depend on the nature of the
analysis and the nature of the log data. For instance, popular log processors, e.g., Logstash
and Fluentd, provide regular expressions out-of-the-box to extract data from well-
known log formats of popular web servers (e.g., Apache Tomcat and Nginx). However,
extracting content from highly unstructured data into a meaningful schema is not trivial.

LOG INFRASTRUCTURE deals with the tooling support necessary to make the further
analysis feasible. For instance, data representation might influence on the efficiency of data
aggregation. Other important concerns include the ability of handling log data for real-
time or offline analysis and scalability to handle the increasing volume of data.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 17/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

We observed two subcategories in this area: (1) log parsing, and (2) log storage. In the
following, we summarize the 16 studies on log infrastructure grouped by these two
categories.

Log parsing
Parsing is the backbone of many log analysis techniques. Some analysis operate under the
assumption that source-code is unavailable; therefore, they rely on parsing techniques to
process log data. Given that log messages often have variable content, the main challenge
tackled by these papers is to identify which log messages describe the same event. For
example, “Connection from A port B” and “Connection from C port D” represent the same
event. The heart of studies in parsing is the template extraction from raw log data.
Fundamentally, this process consists of identifying the constant and variable parts of raw
log messages.

Several approaches rely on the “textual similarity” between the log messages. Aharon
et al. (2009) create a dictionary of all words that appear in the log message and use the
frequency of each word to cluster log messages together. Somewhat similar, IPLOM
(Iterative Partitioning Log Mining) leverages the similarities between log messages related
to the same event, e.g., number, position, and variability of tokens (Makanju, Zincir-
Heywood & Milios, 2009; Makanju, Zincir-Heywood & Milios, 2012). Liang et al. (2007)
also build a dictionary out of the keywords that appear in the logs. Next, each log is
converted to a binary vector, with each element representing whether the log contains
that keyword. With these vectors, the authors compute the correlation between any two
events.

Somewhat different from others, Gainaru et al. (2011) cluster log messages by searching
for the best place to split a log message into its “constant” and its “variable” parts. These
clusters are self-adaptive as new log messages are processed in a streamed fashion.
Hamooni et al. (2016) also uses string similarity to cluster logs. Interestingly, authors
however made use of map-reduce to speed up the processing. Finally, Zhou et al. (2010)
propose a fuzzy match algorithm based on the contextual overlap between log lines.

Transforming logs into “sequences” is another way of clustering logs. Lin et al.
(2016) convert logs into vectors, where each vector contains a sequence of log events of a
given task, and each event has a different weight, calculated in different ways. Tang &
Li (2010) propose LOGTREE, a semi-structural way of representing a log message. The
overall idea is to represent a log message as a tree, where each node is a token, extracted via
a context-free grammar parser that the authors wrote for each of the studied systems.
Interestingly, in this paper, the authors raise awareness to the drawbacks of clustering
techniques that consider only word/term information for template extraction. According
them, log messages related to same events often do not share a single word.

From an empirical perspective, He et al. (2016a) compared four log parsers on five
datasets with over 10 million raw log messages and evaluated their effectiveness in a
real log-mining task. The authors show, among many other findings, that current log
parsing methods already achieve high accuracy, but do not scale well to large log data.
Later, Zhu et al. (2019) extended the former study and evaluated a total of 13 parsing

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 18/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

techniques on 16 datasets. In a different study, He et al. (2018b) also compared existing
parsing techniques and proposed a distributed parsing technique for large-scale datasets
on top of Apache Spark. The authors show that for small datasets, the technique
underperforms due to the communication overhead between workers; however, for
large-scale datasets (e.g., 200 million log messages), the approach overcomes traditional
techniques. It is worth mentioning that the large-scale datasets were synthetically
generated on top of two popular datasets due to the lack of real-world datasets. Agrawal,
Karlupia & Gupta (2019) also proposes a distributed approach based on Apache Spark for
distributed parsing. The comparison between the two approaches (He et al., 2018b;
Agrawal, Karlupia & Gupta, 2019) remains open.

Log storage
Modern complex systems easily generate giga- or petabytes of log data a day. Thus, in the
log data life-cycle, storage plays an important role as, when not handled carefully, it might
become the bottleneck of the analysis process. Researchers and practitioners have been
addressing this problem by offloading computation and storage to server farms and
leveraging distributed processing.

Mavridis & Karatza (2017) frame the problem of log analysis at scale as a “big data”
problem. Authors evaluated the performance and resource usage of two popular big data
solutions (Apache Hadoop and Apache Spark) with web access logs. Their benchmarks
show that both approaches scale with the number of nodes in a cluster. However, Spark is
more efficient for data processing since it minimizes reads and writes in disk. Results
suggest that Hadoop is better suited for offline analysis (i.e., batch processing) while Spark
is better suited for online analysis (i.e., stream processing). Indeed, as mentioned early,
He et al. (2018b) leverages Spark for parallel parsing because of its fast in-memory
processing.

Another approach to reduce storage costs consists of data compression techniques for
efficient analysis (Lin et al., 2015; Liu et al., 2019a). Lin et al. (2015) argue that while
traditional data compression algorithms are useful to reduce storage footprint, the
compression-decompression loop to query data undermines the efficiency of log analysis.
The rationale is that traditional compression mechanisms (e.g., gzip) perform compression
and decompression in blocks of data. In the context of log analysis, this results in waste
of CPU cycles to compress and decompress unnecessary log data. They propose a
compression approach named Cowik that operates in the granularity of log entries.
They evaluated their approach in a log search and log joining system. Results suggest
that the approach is able to achieve better performance on query operations and produce
the same join results with less memory. Liu et al. (2019a) proposes a different approach
named LOGZIP based on an intermediate representation of raw data that exploits the
structure of log messages. The underlying idea is to remove redundant information from
log events and compress the intermediate representation rather than raw logs. Results
indicate higher compression rates compared to baseline approaches (including COWIK).

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 19/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Log analysis
After the processing of log data, the extracted information serves as input to sophisticated
log analysis methods and techniques. Such analysis, which make use of varying algorithms,
help developers in detecting unexpected behavior, performance bottlenecks, or even
security problems.

LOG ANALYSIS deals with knowledge acquisition from log data for a specific purpose,
e.g., detecting undesired behavior or investigating the cause of a past outage. Extracting
insights from log data is challenging due to the complexity of the systems generating that
data.

We observed eight subcategories in this area: (1) anomaly detection, (2) security and
privacy, (3) root cause analysis, (4) failure prediction, (5) quality assurance, (6) model
inference and invariant mining, (7) reliability and dependability, and (8) platforms. In the
following, we summarize the 68 studies on log analysis grouped by these seven different
goals.

Anomaly detection
Anomaly detection techniques aim to find undesired patterns in log data given that
manual analysis is time-consuming, error-prone, and unfeasible in many cases.
We observe that a significant part of the research in the logging area is focused on this type
of analysis. Often, these techniques focus on identifying problems in software systems.
Based on the assumption that an “anomaly” is something worth investigating, these
techniques look for anomalous traces in the log files.

Oliner & Stearley (2007) raise awareness on the need of datasets from real systems to
conduct studies and provide directions to the research community. They analyzed log
data from five super computers and conclude that logs do not contain sufficient
information for automatic detection of failures nor root cause diagnosis, small events
might dramatically impact the number of logs generated, different failures have different
predictive signatures, and messages that are corrupted or have inconsistent formats are
not uncommon. Many of the challenges raised by the authors are well known nowadays
and have been in continuous investigation in academia.

Researchers have been trying several different techniques, such as deep learning and
NLP (Du et al., 2017; Bertero et al., 2017;Meng et al., 2019; Zhang et al., 2019), data mining,
statistical learning methods, and machine learning (Lu et al., 2017; He et al., 2016b;
Ghanbari, Hashemi & Amza, 2014; Tang & Iyer, 1992; Lim, Singh & Yajnik, 2008; Xu et al.,
2009b, Xu et al., 2009a) control flow graph mining from execution logs (Nandi et al., 2016),
finite state machines (Fu et al., 2009; Debnath et al., 2018), frequent itemset mining
(Lim, Singh & Yajnik, 2008), dimensionality reduction techniques (Juvonen, Sipola &
Hämäläinen, 2015), grammar compression of log sequences (Gao et al., 2014), and
probabilistic suffix trees (Bao et al., 2018).

Interestingly, while these papers often make use of systems logs (e.g., logs generated
by Hadoop, a common case study among log analysis in general) for evaluation, we
conjecture that these approaches are sufficiently general, and could be explored in (or are
worth trying at on) other types of logs (e.g., application logs).

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 20/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Researchers have also explored log analysis techniques within specific contexts.
For instance, finding anomalies in HTTP logs by using dimensionality reduction
techniques (Juvonen, Sipola & Hämäläinen, 2015), finding anomalies in cloud operations
(Farshchi et al., 2015; Farshchi et al., 2018) and Spark programs (Lu et al., 2017) by using
machine learning. As within many other fields of software engineering, we see an
increasingly adoption of machine and deep learning. In 2016, He et al. (2016b) then
evaluated six different algorithms (three supervised, and three unsupervised machine
learning methods) for anomaly detection. The authors found that supervised anomaly
detection methods present higher accuracy when compared to unsupervised methods; that
the use of sliding windows (instead of a fixed window) can increase the accuracy of the
methods; and that methods scale linearly with the log size. In 2017, Du et al. (2017)
proposed DEEPLOG, a deep neural network model that used Long Short-Term Memory
(LSTM) to model system logs as a natural language sequence, and Bertero et al. (2017)
explored the use of NLP, considering logs fully as regular text. In 2018, Debnath et al.
(2018) (by means of the LOGMINE technique (Hamooni et al., 2016)) explored the use of
clustering and pattern matching techniques. In 2019, Meng et al. (2019) proposed a
technique based on unsupervised learning for unstructured data. It features a transformer
TEMPLATE2VEC (as an alternative to WORD2VEC) to represent extracted templates from
logs and LSTMs to learn common sequences of log sequences. In addition, Zhang et al.
(2019) leverages LSTM models with attention mechanism to handle unstable log data.
They argue that log data changes over time due to evolution of software and models
addressing log analysis need to take this into consideration.

Security and privacy
Logs can be leveraged for security purposes, such as intrusion and attacks detection.

Oprea et al. (2015) use (web) traffic logs to detect early-stage malware and advanced
persistence threat infections in enterprise network, by modeling the information based on
belief propagation inspired by graph theory. Chu et al. (2012) analyses access logs (in their
case, from TACACS+, an authentication protocol developed by Cisco) to distinguish
normal operational activities from rogue/anomalous ones. Yoon & Squicciarini (2014)
focus on the analysis and detection of attacks launched by malicious or misconfigured
nodes, which may tamper with the ordinary functions of the MapReduce framework.
Yen et al. (2013) propose Beehive, a large-scale log analysis for detecting suspicious activity
in enterprise networks, based on logs generated by various network devices. In the
telecommunication context, Goncalves, Bota & Correia (2015) used clustering algorithms
to identify malicious activities based on log data from firewall, authentication and DHCP
servers.

An interesting characteristic among them all is that the most used log data is, by far,
network data. We conjecture this is due to the fact that (1) network logs (e.g., HTTP, web,
router logs) are independent from the underlying application, and that (2) network
tends to be, nowadays, a common way of attacking an application.

Differently from analysis techniques where the goal is to find a bug, and which are
represented in the logs as anomalies, understanding which characteristics of log messages

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 21/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

can reveal security issues is still an open topic. Barse & Jonsson (2004) extract attack
manifestations to determine log data requirements for intrusion detection. The authors
then present a framework for determining empirically which log data can reveal a
specific attack. Similarly, Abad et al. (2003) argue for the need of correlation data from
different logs to improve the accuracy of intrusion detection systems. The authors show in
their paper how different attacks are reflected in different logs, and how some attacks are
not evident when analyzing single logs. Prewett (2005) examines how the unique
characteristics of cluster machines, including how they are generally operated in the
larger context of a computing center, can be leveraged to provide better security.

Finally, regarding privacy, Butin & Le Métayer (2014) propose a framework for
accountability based on “privacy-friendly” event logs. These logs are then used to show
compliance with respect to data protection policies.

Root cause analysis
Detecting anomalous behavior, either by automatic or monitoring solutions, is just part of
the process. Maintainers need to investigate what caused that unexpected behavior. Several
studies attempt to take the next step and provide users with, e.g., root cause analysis,
accurate failure identification, and impact analysis.

Kimura et al. (2014) identify spatial-temporal patterns in network events. The authors
affirm that such spatial-temporal patterns can provide useful insights on the impact
and root cause of hidden network events. Ren et al. (2019) explores a similar idea in
the context of diagnosing non-reproducible builds. They propose a differential analysis
among different build traces based on I/O and parent-child dependencies. The technique
leverages the common dependencies patterns to filter abnormal patterns and to pinpoint
the cause of the non-reproducible build. Pi et al. (2018) propose a feedback control
tool for distributed applications in virtualized environments. By correlating log messages
and resource consumption, their approach builds relationships between changes in
resource consumption and application events. Somewhat related, Chuah et al. (2013)
identifies anomalies in resource usage, and link such anomalies to software failures. Zheng
et al. (2011) also argue for the need of correlating different log sources for a better problem
identification. In their study, authors correlate supercomputer BlueGene’s reliability,
availability and serviceability logs with its job logs, and show that such a correlation was
able to identify several important observations about why their systems and jobs fail.
Gurumdimma et al. (2016) also leverages multiple sources of data for accurate diagnosis of
malfunctioning nodes in the Ranger Supercomputer. The authors argue that, while console
logs are useful for administration tasks, they can complex to analyze by operators.
They propose a technique based on the correlation of console logs and resource usage
information to link jobs with anomalous behavior and erroneous nodes.

Failure prediction
Being able to anticipate failures in critical systems not only represents competitive business
advantage but also represents prevention of unrecoverable consequences to the business.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 22/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Failure prediction is feasible once there is knowledge about abnormal patterns and
their related causes. However, it differs from anomaly detection in the sense that
identifying the preceding patterns of an unrecoverable state requires insights from root
cause analysis. This approach shifts monitoring to a proactive manner rather than reactive,
i.e., once the problem occurred.

Work in this area, as expected, relies on statistical and probabilistic models, from
standard regression analysis to machine learning.Wang et al. (2017) apply random forests
in event logs to predict maintenance of equipment (in their case study, ATMs). Fu et al.
(2014b) use system logs (from clusters) to generate causal dependency graphs and
predict failures. Russo, Succi & Pedrycz (2015) mine system logs (more specifically,
sequences of logs) to predict the system’s reliability by means of linear radial basis
functions, and multi-layer perceptron learners. Khatuya et al. (2018) propose ADELE, a
machine learning-based technique to predict functional and performance issues. Shalan &
Zulkernine (2013) utilize system logs to predict failure occurrences by means of regression
analysis and support vector machines. Fu et al. (2012) also utilize system logs to
predict failures by mining recurring event sequences that are correlated.

We noticed that, given that only supervised models have been used so far, feature
engineering plays an important role in these papers. Khatuya et al. (2018), for example,
uses event count, event ratio, mean inter-arrival time, mean inter-arrival distance, severity
spread, and time-interval spread. Russo, Succi & Pedrycz (2015) use defective and non
defective sequences of events as features. Shalan & Zulkernine (2013)’s paper, although not
completely explicit about which features they used, mention CPU, memory utilization,
read/write instructions, error counter, error messages, error types, and error state
parameters as examples of features.

Quality assurance
Log analysis might support developers during the software development life cycle and,
more specifically, during activities related to quality assurance.

Andrews & Zhang (2000, 2003) advocated the use of logs for testing purposes since the
early 2000’s. In their work, the authors propose an approach called log file analysis (LFA).
LFA requires the software under test to write a record of events to a log file, following a
pre-defined logging policy that states precisely what the software should log. A log file
analyzer, also written by the developers, then analyses the produced log file and only
accepts it in case the run did not reveal any failures. The authors propose a log file analysis
language to specify such analyses.

More than 10 years later, Chen et al. (2018) propose an automated approach to estimate
code coverage via execution logs named LogCoCo. The motivation for this use of log
data comes from the need to estimate code coverage from production code. The authors
argue that, in a large-scale production system, code coverage from test workloads might
not reflect coverage under production workload. Their approach relies on program
analysis techniques to match log data and their corresponding code paths. Based on this
data, LogCoCo estimates different coverage criteria, i.e., method, statement, and branch

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 23/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

coverage. Their experiments in six different systems show that their approach is highly
accurate (>96%).

Model inference and invariant mining
Model-based approaches to software engineering seek to support understanding and
analysis by means of abstraction. However, building such models is a challenging and
expensive task. Logs serve as a source for developers to build representative models and
invariants of their systems. These models and invariants may help developers in
different tasks, such as comprehensibility and testing. These approaches generate different
types of models, such as (finite) state machines (Ulrich et al., 2003; Mariani & Pastore,
2008; Tan et al., 2010; Beschastnikh et al., 2014) directed workflow graphs (Wu, Anchuri &
Li, 2017) client-server interaction diagrams (Awad &Menasce, 2016), invariants (Kc & Gu,
2011; Lou et al., 2010), and dependency models (Steinle et al., 2006).

State machines are the most common type of model extracted from logs. Beschastnikh
et al. (2014), for example, infer state machine models of concurrent systems from logs.
The authors show that their models are sufficiently accurate to help developers in finding
bugs. Ulrich et al. (2003) show how log traces can be used to build formal execution
models. The authors use SDL, a model-checking description technique, common in
telecommunication industries.Mariani & Pastore (2008) propose an approach where state
machine-based models of valid behaviors are compared with log traces of failing
executions. The models are inferred via the kBehavior engine (Mariani & Pastore, 2008).
Tan et al. (2010) extract state-machine views of the MapReduce flow behavior using the
native logs that Hadoop MapReduce systems produce.

The mining of properties that a system should hold has also been possible via log
analysis. Lou et al. (2010) derive program invariants from logs. The authors show that the
invariants that emerge from their approach are able to detect numerous real-world
problems. Kc & Gu (2011) aim to facilitate the troubleshooting of cloud computing
infrastructures. Besides implementing anomaly detection techniques, their tool also
performs invariant checks in log events, e.g., two processes performing the same task at the
same time (these invariants are not automatically devised, but should be written by system
administrators).

We also observe directed workflow graphs and dependency maps as other types of
models built from logs. Wu, Anchuri & Li (2017) propose a method that mines structural
events and transforms them into a directed workflow graph, where nodes represent log
patterns, and edges represent the relations among patterns. Awad & Menasce (2016)
derive performance models of operational systems based on system logs and configuration
logs. Finally, Steinle et al. (2006) map dependencies among internal components through
system logs, via data mining algorithms and natural language processing techniques.

Finally, and somewhat different from the other papers in this ramification, Di Martino,
Cinque & Cotroneo (2012) argue that an important issue in log analysis is that, when a
failure happens, multiple independent error events appear in the log. Reconstructing
the failure process by grouping together events related to the same failure (also known as
data coalescence techniques) can therefore help developers in finding the problem.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 24/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

According to the authors, while several coalescence techniques have been proposed over
time (Tsao & Siewiorek, 1983; Hansen & Siewiorek, 1992), evaluating these approaches is
a challenging task as the ground truth of the failure is often not available. To help
researchers in evaluating their approaches, the authors propose a technique which
basically generates synthetic logs along with the ground truth they represent.

Reliability and dependability
Logs can serve as a means to estimate how reliable and dependable a software system is.
Research in this subcategory often focuses on large software systems, such as web and
mobile applications that are distributed in general, and high performance computers.

Banerjee, Srikanth & Cukic (2010) estimate the reliability of a web Software-as-a-Service
(SaaS) by analyzing its web traffic logs. Authors categorize different types of log events
with different severity levels, counting, e.g, successfully loaded (non-critical) images
separately from core transactions, providing different perspectives on reliability. Tian,
Rudraraju & Li (2004) evaluate the reliability of two web applications, using several
metrics that can be extracted from web access and error logs (e.g., errors per page hits,
errors per sessions, and errors per users). The authors conclude that the usage of workload
and usage patterns, present in log files, during testing phases could significantly improve
the reliability of the system. Later, Huynh & Miller (2009) expanded previous work
(Tian, Rudraraju & Li, 2004) by enumerating improvements for reliability assessment.
They emphasize that some (http) error codes require a more in-depth analysis, e.g., errors
caused by factors that cannot be controlled by the website administrators should be
separated from the ones that can be controlled, and that using IP addresses as a way to
measure user count can be misleading, as often many users share the same IP address.

Outside the web domain, El-Sayed & Schroeder (2013) explore a decade of field data
from the Los Alamos National Lab and study the impact of different factors, such as
power quality, temperature, fan activity, system usage, and even external factors, such
as cosmic radiation, and their correlation with the reliability of High Performance
Computing (HPC) systems. Among the lessons learned, the authors observe that the
day following a failure, a node is 5 to 20 times more likely to experience an additional
failure, and that power outages not only increase follow-up software failures, but also
infrastructure failures, such as problems in distributed storage and file systems. In a later
study, Park et al. (2017) discuss the challenges of analyzing HPC logs. Log analysis of HPC
data requires understanding underlying hardware characteristics and demands processing
resources to analyze and correlate data. The authors introduce an analytic framework
based on NOSQL databases and Big Data technology (Spark) for efficient in-memory
processing to assist system administrators.

Analyzing the performance of mobile applications can be challenging specially when
they depend on back-end distributed services. IBM researchers (Ramakrishna et al., 2017)
proposed MIAS (Mobile Infrastructure Analytics System) to analyze performance of
mobile applications. The technique considers session data and system logs from
instrumented applications and back-end services (i.e., servers and databases) and applies

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 25/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

statistical methods to correlate them and reduce the size of relevant log data for further
analysis.

Log platforms
Monitoring systems often contain dashboards and metrics to measure the “heartbeat” of
the system. In the occurrence of abnormal behavior, the operations team is able to visualize
the abnormality and conduct further investigation to identify the cause. Techniques to
reduce/filter the amount of log data and efficient querying play an important role to
support the operations team on diagnosing problems. One consideration is, while visual
aid is useful, in one extreme, it can be overwhelming to handle several charts and
dashboards at once. In addition, it can be non-trivial to judge if an unknown pattern on
the dashboard represents an unexpected situation. In practice, operations engineers may
rely on experience and past situations to make this judgment. Papers in this subcategory
focus on full-fledged platforms that aim at providing a full experience for monitoring
teams.

Two studies were explicitly conducted in an industry setting, namely MELODY
(Aharoni et al., 2011) at IBM and FLAP (Li et al., 2017) at Huawei Technologies. MELODY
is a tool for efficient log mining that features machine learning-based anomaly detection
for proactive monitoring. It was applied with ten large IBM clients, and the authors
reported that MELODY was useful to reduce the excessive amount of data faced by their
users. FLAP is a tool that combines state-of-the-art processing, storage, and analysis
techniques. One interesting feature that was not mentioned in other studies is the use of
template learning for unstructured logs. The authors also report that FLAP is in
production internally at Huawei.

While an industry setting is not always accessible to the research community, publicly
available datasets are useful to overcome this limitation. Balliu et al. (2015) propose BIDAL,
a tool to characterize the workload of cloud infrastructures, They use log data from Google
data clusters for evaluation and incorporate support to popular analysis languages and
storage backends on their tool. Di et al. (2017) propose LOGAIDER, a tool that integrates log
mining and visualization to analyze different types of correlation (e.g., spatial and
temporal). In this study, they use log data from Mira, an IBM Blue Gene-based
supercomputer for scientific computing, and reported high accuracy and precision in
uncovering correlations associated with failures. Gunter et al. (2007) propose a log
summarization solution for time-series data integrated with anomaly detection techniques
to troubleshoot grid systems. They used a publicly available testbed and conducted
controlled experiments to generate log data and anomalous events. The authors highlight
the importance of being able to choose which anomaly detection technique to use, since
they observed different performance depending on the anomaly under analysis.

Open-source systems for cloud infrastructure and big data can be also used as
representative objects of study. Yu et al. (2016) and Neves, Machado & Pereira (2018)
conduct experiments based on OpenStack and Apache Zookeeper, respectively. CLOUDSEER
(Yu et al., 2016) is a solution to monitor management tasks in cloud infrastructures.
The technique is based on the characterization of administrative tasks as models inferred

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 26/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

from logs. CloudSeer reports anomalies based on model deviation and aggregates
associated logs for further inspection. Finally, FALCON (Neves, Machado & Pereira, 2018)
is a tool that builds space-time diagrams from log data. It features a happens-before
symbolic modeling that allows obtaining ordered event scheduling from unsynchronized
machines. One interesting feature highlighted by the authors is the modular design of tool
for ease extension.

DISCUSSION
Our results show that logging is an active research field that attracted not only researchers
but also practitioners. We observed that most of the research effort focuses on log analysis
techniques, while the other research areas are still in a early stage. In the following, we
highlight open problems, gaps, and future directions per research area.

In LOGGING, several empirical studies highlight the importance of better tooling
support for developers since logging is conducted in a trial-and-error manner
(see subcategory “Empirical Studies”). Part of the problem is the lack of requirements
for log data. When the requirements are well defined, logging frameworks can be tailored
to a particular use case and it is feasible to test whether the generated log data fits the use
case (see subcategory “Log Requirements”). However, when requirements are not clear,
developers rely on their own experience to make log-related decisions. While static analysis
is useful to anticipate potential issues in log statements (e.g., null reference in a logged
variable), other logging decisions (e.g., where to log) rely on the context of source code
(see subcategory “Implementation of Log Statements”). Research on this area already
shows the feasibility of employing machine learning to address those context-sensitive
decisions. However, it is still unknown the implications of deploying such tools to
developers. Further work is necessary to address usability and operational aspects of those
techniques. For instance, false positives is a reality in machine learning. There is no 100%
accurate model and false positives will eventually emerge even if in a low rate. How to
communicate results in a way that developers keeps engaged in a productive way is
important to bridge the gap of theory and practice. This also calls for closer collaboration
between academia and industry.

In LOG INFRASTRUCTURE, most of the research effort focused on parsing techniques.
We observed that most papers in the “Log Parsing” subcategory address the template
extraction problem as an unsupervised problem, mainly by clustering the static part of the
log messages. While the analysis of system logs (e.g., web logs and other data provided that
the runtime environment) was extensively explored (mostly Hadoop log data), little has
been explored in the field of application logs. We believe that this is due to the lack of
publicly available dataset. In addition, application logs might not have a well-defined
structure and can vary significantly from structured system logs. This could undermine
the feasibility of exploiting clustering techniques. One way to address the availability
problem could be using log data generated from test suites in open-source projects.
However, test suites might not produce comparable volume of data. Unless there is a
publicly available large-scale application that could be used by the research community, we
argue that the only way to explore log parsing at large-scale is in partnership with industry.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 27/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Industry would highly benefit from this collaboration, as researchers would be able to
explore latest techniques under a real workload environment. In addition to the
exploration of application logs, there are other research opportunities for log parsing. Most
papers exploit parsing for log analysis tasks. While this is an important application with its
own challenges (e.g., data labeling), parsing could be also applied for efficient log
compression and better data storage.

LOG ANALYSIS is the research area with the highest number of primary studies, and our
study shows that the body of knowledge for data modeling and analysis is already
extensive. For instance, logs can be viewed as sequences of events, count vectors, or graphs.
Each representation enables the usage of different algorithms that might outperform other
approaches under different circumstances. However, it remains open how different
approaches compare to each other. To fulfill this gap, future research must address what
trade-offs to apply and elaborate on the circumstances that make one approach more
suitable than the other. A public repository on GitHub (Loghub: https://github.com/
logpai/loghub) contains several datasets used in many studies in log analysis. We
encourage practitioners and researchers to contribute to this collective effort. In addition,
most papers frame a log analysis task as a supervised learning problem. While this is the
most popular approach for machine learning, the lack of representative datasets with
labeled data is an inherent barrier. Projects operating in a continuous delivery culture,
where software changes at a fast pace (e.g., hourly deploys), training data might become
outdated quickly and the cost of collecting and labeling new data might be prohibitive.
We suggest researchers to also consider how their techniques behave in such dynamic
environment. More specifically, future work could explore the use of semi-supervised and
unsupervised learning to overcome the cost of creating and updating datasets.

THREATS TO VALIDITY
Our study maps the research landscape in logging, log infrastructure, and log analysis
based on our interpretation of the 108 studies published from 1992 to 2019. In this section,
we discuss possible threats to the validity of this work and possibilities for future
expansions of this systematic mapping.

External validity
The main threat to the generalization of our conclusions relates to the representativeness
of our dataset. Our procedure to discover relevant papers consists of querying popular
digital libraries rather than looking into already known venues in Software Engineering
(authors’ field of expertise). While we collected data from five different sources, it is
unclear how each library indexes the entries. It is possible that we may have missed a
relevant paper because none of the digital libraries reported it. Therefore, the search
procedure might be unable to yield complete results. Another factor that influences the
completeness of our dataset is the filtering of papers based on the venue rank (i.e., A and A*
according to the CORE Rank). There are several external factors that influence the
acceptance of a paper that are not necessarily related to the quality and relevance of the
study. The rationale for applying the exclusion criterion by venue rank is to reduce the

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 28/38

https://github.com/logpai/loghub
https://github.com/logpai/loghub
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

dataset to a manageable size using a well-defined rule. Overall, it is possible that relevant
studies might be missing in our analysis.

One way to address this limitation is by analyzing the proceedings of conferences and
journals on different years to identify missing entries. In our case, we have 46 after the
selection process. Another approach is by applying backwards/forward snowballing after
the selection process. While Google Scholar provides a “cited by” functionality that is
useful for that purpose, the process still requires manual steps to query and analyze the
results.

Nevertheless, while the aforementioned approaches are useful to avoid missing studies,
we argue that the number of papers and venues addressed in our work is a representative
sample from the research field. The absence of relevant studies do not undermine our
conclusions and results since we are not studying any particular dimension of the research
field in depth (e.g., whether technique “A” performs better than “B” for parsing).
Furthermore, we analyze a broad corpus of high-quality studies that cover the life-cycle of
log data.

Internal validity
The main threat to the internal validity relates to our classification procedure. The first
author conducted the first step of the characterization procedure. Given that the entire
process was mostly manual, this might introduce a bias on the subsequent analysis. To
reduce its impact, the first author performed the procedure twice. Moreover, the second
author revisited all the decisions made by the first author throughout the process.
All diversions were discussed and settled throughout the study.

CONCLUSIONS
In this work, we show how researchers have been addressing the different challenges in
the life-cycle of log data. Logging provides a rich source of data that can enable several
types of analysis that is beneficial to the operations of complex systems. LOG ANALYSIS is a
mature field, and we believe that part of this success is due to the availability of dataset to
foster innovation. LOGGING and LOG INFRASTRUCTURE, on the other hand, are still in a early
stage of development. There are several barriers that hinder innovation in those area,
e.g., lack of representative data of application logs and access to developers. We believe that
closing the gap between academia and industry can increase momentum and enable the
future generation of tools and standards for logging.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Netherlands Organization for Scientific Research (NWO)
MIPL project [grant number 628.008.003]. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 29/38

http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Grant Disclosures
The following grant information was disclosed by the authors:
Netherlands Organization for Scientific Research (NWO) MIPL: 628.008.003.

Competing Interests
Arie van Deursen is an Academic Editor for PeerJ Computer Science.

Jeanderson Barros Cândido is a Ph.D. student at TU Delft and is conducting his
research at Adyen N.V., the industry partner of his Ph.D. program.

Author Contributions
� Jeanderson Cândido conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Maurício Aniche conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

� Arie van Deursen analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.489#supplemental-information.

REFERENCES
Abad C, Taylor J, Sengul C, Yurcik W, Zhou Y, Rowe K. 2003. Log correlation for intrusion

detection: a proof of concept. In: Proceedings of the 19th Annual Computer Security Applications
Conference, 2003, Las Vegas, Nevada, USA. Piscataway: IEEE, 255–264.

Agrawal A, Karlupia R, Gupta R. 2019. Logan: a distributed online log parser. In: 2019 IEEE 35th
International Conference on Data Engineering (ICDE). Piscataway: IEEE, 1946–1951.

Aharon M, Barash G, Cohen I, Mordechai E. 2009. One graph is worth a thousand logs:
uncovering hidden structures in massive system event logs. In: Buntine W, Grobelnik M,
Mladenić D, Shawe-Taylor J, eds. Machine Learning and Knowledge Discovery in Databases.
Berlin, Heidelberg: Springer, 227–243.

Aharoni E, Fine S, Goldschmidt Y, Lavi O, Margalit O, Rosen-Zvi M, Shpigelman L. 2011.
Smarter log analysis. IBM Journal of Research and Development 55(5):10:1–10:10
DOI 10.1147/JRD.2011.2165675.

Andrews JH. 1998. Testing using log file analysis: tools, methods, and issues. In: Proceedings 13th
IEEE International Conference on Automated Software Engineering (Cat. No.98EX239). 157–166.

Andrews JH, Zhang Y. 2000. Broad-spectrum studies of log file analysis. In: Proceedings of the
22nd International Conference on Software Engineering - ICSE ’00, Limerick, Ireland. New York:
ACM Press, 105–114.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 30/38

http://dx.doi.org/10.7717/peerj-cs.489#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.489#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.489#supplemental-information
http://dx.doi.org/10.1147/JRD.2011.2165675
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Andrews JH, Zhang Y. 2003. General test result checking with log file analysis. IEEE Transactions
on Software Engineering 29(7):634–648 DOI 10.1109/TSE.2003.1214327.

Anu H, Chen J, Shi W, Hou J, Liang B, Qin B. 2019. An approach to recommendation of
verbosity log levels based on logging intention. In: 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). Piscataway: IEEE, 125–134.

Awad M, Menasce DA. 2016. Performance model derivation of operational systems through log
analysis. In: 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), London, United Kingdom. Piscataway:
IEEE, 159–168.

Balliu A, Olivetti D, Babaoglu O, Marzolla M, Sȋrbu A. 2015. A big data analyzer for large trace
logs. Computing 98:1225–1249.

Banerjee S, Srikanth H, Cukic B. 2010. Log-based reliability analysis of software as a service
(SaaS). In: 2010 IEEE 21st International Symposium on Software Reliability Engineering, San Jose,
CA, USA. Piscataway: IEEE, 239–248.

Bao L, Li Q, Lu P, Lu J, Ruan T, Zhang K. 2018. Execution anomaly detection in large-scale
systems through console log analysis. Journal of Systems and Software 143(1):172–186
DOI 10.1016/j.jss.2018.05.016.

Barrett B. 2019. The catch-22 that broke the internet. Wired Magazine. Available at
https://www.wired.com/story/google-cloud-outage-catch-22/#:~:text=12%3A26%20PM-,The%
20Catch%2D22%20That%20Broke%20the%20Internet,Google%20needed%20to%20fix%20it.
&text=Five%20days%20ago%2C%20the%20internet,around%20the%20globe%2C%20YouTube
%20sputtered.

Barse EL, Jonsson E. 2004. Extracting attack manifestations to determine log data requirements for
intrusion detection. In: 20th Annual Computer Security Applications Conference, Tucson, AZ,
USA. Piscataway: IEEE, 158–167.

Bass L, Weber I, Zhu L. 2015. DevOps: a software architect’s perspective. Boston: Addison-Wesley
Professional.

Bertero C, Roy M, Sauvanaud C, Tredan G. 2017. Experience report: log mining using natural
language processing and application to anomaly detection. In: 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE), Toulouse. Piscataway: IEEE, 351–360.

Beschastnikh I, Brun Y, Ernst MD, Krishnamurthy A. 2014. Inferring models of concurrent
systems from logs of their behavior with CSight. In: Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, Hyderabad, India. New York: ACM, 468–479.

Butin D, Le Métayer D. 2014. Log analysis for data protection accountability. In: Jones C,
Pihlajasaari P, Sun J, eds. FM 2014: Formal Methods. Cham: Springer International Publishing,
163–178.

Chen B, Jiang ZMJ. 2017a. Characterizing and detecting anti-patterns in the logging code. In:
Proceedings of the 39th International Conference on Software Engineering, ICSE ’17, Piscataway,
NJ, USA. Piscataway: IEEE Press, 71–81.

Chen B, Jiang ZMJ. 2017b. Characterizing logging practices in Java-based open source software
projects—a replication study in Apache Software Foundation. Empirical Software Engineering
22(1):330–374 DOI 10.1007/s10664-016-9429-5.

Chen B, Song J, Xu P, Hu X, Jiang ZMJ. 2018. An automated approach to estimating code
coverage measures via execution logs. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier, France. New York, NY,
USA: ACM, 305–316.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 31/38

http://dx.doi.org/10.1109/TSE.2003.1214327
http://dx.doi.org/10.1016/j.jss.2018.05.016
https://www.wired.com/story/google-cloud-outage-catch-22/#:~:text=12%3A26%20PM-,The%20Catch%2D22%20That%20Broke%20the%20Internet,Google%20needed%20to%20fix%20it.&text=Five%20days%20ago%2C%20the%20internet,around%20the%20globe%2C%20YouTube%20sputtered
https://www.wired.com/story/google-cloud-outage-catch-22/#:~:text=12%3A26%20PM-,The%20Catch%2D22%20That%20Broke%20the%20Internet,Google%20needed%20to%20fix%20it.&text=Five%20days%20ago%2C%20the%20internet,around%20the%20globe%2C%20YouTube%20sputtered
https://www.wired.com/story/google-cloud-outage-catch-22/#:~:text=12%3A26%20PM-,The%20Catch%2D22%20That%20Broke%20the%20Internet,Google%20needed%20to%20fix%20it.&text=Five%20days%20ago%2C%20the%20internet,around%20the%20globe%2C%20YouTube%20sputtered
https://www.wired.com/story/google-cloud-outage-catch-22/#:~:text=12%3A26%20PM-,The%20Catch%2D22%20That%20Broke%20the%20Internet,Google%20needed%20to%20fix%20it.&text=Five%20days%20ago%2C%20the%20internet,around%20the%20globe%2C%20YouTube%20sputtered
http://dx.doi.org/10.1007/s10664-016-9429-5
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Chu J, Ge Z, Huber R, Ji P, Yates J, Yu Y-C. 2012. ALERT-ID: analyze logs of the network element
in real time for intrusion detection. In: Balzarotti D, Stolfo SJ, Cova M, eds. Research in Attacks,
Intrusions, and Defenses. Berlin, Heidelberg: Springer, 294–313.

Chuah E, Jhumka A, Narasimhamurthy S, Hammond J, Browne JC, Barth B. 2013. Linking
resource usage anomalies with system failures from cluster log data. In: 2013 IEEE 32nd
International Symposium on Reliable Distributed Systems, Braga, Portugal. Piscataway: IEEE,
111–120.

Chung F. 2018. Coles stores reopen after ‘minor’ IT glitch causes nationwide register outage.
Available at https://www.news.com.au/finance/business/retail/coles-stores-closed-due-to-
nationwide-register-outage/news-story/4e6558c5e439a8eaaab08e03ba316283.

Cinque M, Cotroneo D, Natella R, Pecchia A. 2010. Assessing and improving the effectiveness of
logs for the analysis of software faults. In: 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN), Chicago, IL, USA. Piscataway: IEEE, 457–466.

Cinque M, Cotroneo D, Pecchia A. 2013. Event logs for the analysis of software failures:
a rule-based approach. IEEE Transactions on Software Engineering 39(6):806–821
DOI 10.1109/TSE.2012.67.

da Cruz SM, Campos ML, Pires PF, Campos LM. 2004.Monitoring e-business web services usage
through a log based architecture. In: Proceedings. IEEE International Conference on Web
Services, San Diego, CA, USA. Piscataway: IEEE, 61–69.

Debnath B, Solaimani M, Gulzar MAG, Arora N, Lumezanu C, Xu J, Zong B, Zhang H, Jiang G,
Khan L. 2018. LogLens: a real-time log analysis system. In: 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), Vienna. Piscataway: IEEE, 1052–1062.

Di S, Gupta R, Snir M, Pershey E, Cappello F. 2017. LogAider: a tool for mining potential
correlations of HPC log events. In: Proceedings of the 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid ’17, Madrid, Spain. Piscataway: IEEE Press,
442–451.

Di Martino C, Cinque M, Cotroneo D. 2012. Assessing time coalescence techniques for the
analysis of supercomputer logs. In: IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2012), Boston, MA, USA. Piscataway: IEEE, 1–12.

Du M, Li F, Zheng G, Srikumar V. 2017. DeepLog: anomaly detection and diagnosis from system
logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, Dallas, Texas, USA. New York: ACM, 1285–1298.

Dyck A, Penners R, Lichter H. 2015. Towards definitions for release engineering and devops. In:
3rd International Workshop onRelease Engineering (RELENG), 2015 IEEE/ACM, IEEE, 3.

El-Masri D, Petrillo F, Guéhéneuc Y-G, Hamou-Lhadj A, Bouziane A. 2020. A systematic
literature review on automated log abstraction techniques. Information and Software Technology
122:106276.

El-Sayed N, Schroeder B. 2013. Reading between the lines of failure logs: understanding how HPC
systems fail. In: 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Budapest, Hungary. Piscataway: IEEE, 1–12.

Farshchi M, Schneider J-G, Weber I, Grundy J. 2015. Experience report: anomaly detection of
cloud application operations using log and cloud metric correlation analysis. In: 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE), Gaithersbury, MD, USA.
Piscataway: IEEE, 24–34.

Farshchi M, Schneider J-G, Weber I, Grundy J. 2018.Metric selection and anomaly detection for
cloud operations using log and metric correlation analysis. Journal of Systems and Software
137(9):531–549 DOI 10.1016/j.jss.2017.03.012.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 32/38

https://www.news.com.au/finance/business/retail/coles-stores-closed-due-to-nationwide-register-outage/news-story/4e6558c5e439a8eaaab08e03ba316283
https://www.news.com.au/finance/business/retail/coles-stores-closed-due-to-nationwide-register-outage/news-story/4e6558c5e439a8eaaab08e03ba316283
http://dx.doi.org/10.1109/TSE.2012.67
http://dx.doi.org/10.1016/j.jss.2017.03.012
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Fu Q, Lou J-G, Wang Y, Li J. 2009. Execution anomaly detection in distributed systems through
unstructured log analysis. In: 2009 Ninth IEEE International Conference on Data Mining,Miami
Beach, FL, USA. Piscataway: IEEE, 149–158.

Fu Q, Zhu J, Hu W, Lou J-G, Ding R, Lin Q, Zhang D, Xie T. 2014a. Where do developers log?
An empirical study on logging practices in industry. In: Companion Proceedings of the 36th
International Conference on Software Engineering, ICSE Companion 2014, Hyderabad, India.
New York: ACM, 24–33.

Fu X, Ren R, McKee SA, Zhan J, Sun N. 2014b. Digging deeper into cluster system logs for failure
prediction and root cause diagnosis. In: 2014 IEEE International Conference on Cluster
Computing (CLUSTER), Madrid, Spain. Piscataway: IEEE, 103–112.

Fu X, Ren R, Zhan J, Zhou W, Jia Z, Lu G. 2012. LogMaster: mining event correlations in logs of
large-scale cluster systems. In: 2012 IEEE 31st Symposium on Reliable Distributed Systems, Irvine,
CA, USA. IEEE, 71–80.

Gainaru A, Cappello F, Trausan-Matu S, Kramer B. 2011. Event log mining tool for large scale
HPC systems. In: Jeannot E, Namyst R, Roman J, eds. Euro-Par 2011 Parallel Processing. Berlin,
Heidelberg: Springer, 52–64.

Gao Y, Zhou W, Zhang Z, Han J, Meng D, Xu Z. 2014. Online anomaly detection by improved
grammar compression of log sequences. In: Zaki MJ, Obradovic Z, Tan P-N, Banerjee A,
Kamath C, Parthasarathy S, eds. Proceedings of the 2014 SIAM International Conference on Data
Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014. SIAM, 911–919.

Gartner. 2019. How to get started with AIOps. Available at https://www.gartner.com/
smarterwithgartner/how-to-get-started-with-aiops/.

Ghanbari S, Hashemi AB, Amza C. 2014. Stage-aware anomaly detection through tracking log
points. In: Proceedings of the 15th International Middleware Conference, Middleware ’14,
Bordeaux, France. New York: ACM, 253–264.

Goncalves D, Bota J, Correia M. 2015. Big data analytics for detecting host misbehavior in large
logs. In: 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland. Piscataway: IEEE, 238–245.

Google. 2019. Google cloud networking incident #19009. Available at https://status.cloud.google.
com/incident/cloud-networking/19009.

Gunter D, Tierney BL, Brown A, Swany M, Bresnahan J, Schopf JM. 2007. Log summarization
and anomaly detection for troubleshooting distributed systems. In: 2007 8th IEEE/ACM
International Conference on Grid Computing, Austin, TX, USA. Piscataway: IEEE, 226–234.

Gurumdimma N, Jhumka A, Liakata M, Chuah E, Browne J. 2016. CRUDE: combining resource
usage data and error logs for accurate error detection in large-scale distributed systems. In: 2016
IEEE 35th Symposium on Reliable Distributed Systems (SRDS), Budapest, Hungary. Piscataway:
IEEE, 51–60.

Hamooni H, Debnath B, Xu J, Zhang H, Jiang G, Mueen A. 2016. LogMine: fast pattern
recognition for log analytics. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, CIKM ’16, Indianapolis, Indiana, USA. New York:
ACM, 1573–1582.

Hansen JP, Siewiorek DP. 1992. Models for time coalescence in event logs. In: Digest of Papers.
FTCS-22: The Twenty-Second International Symposium on Fault-Tolerant Computing, Boston,
MA, USA. Piscataway: IEEE, 221–227.

Hassani M, Shang W, Shihab E, Tsantalis N. 2018. Studying and detecting log-related issues.
Empirical Software Engineering 23(6):3248–3280 DOI 10.1007/s10664-018-9603-z.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 33/38

https://www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops/
https://www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops/
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
http://dx.doi.org/10.1007/s10664-018-9603-z
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

He P, Chen Z, He S, Lyu MR. 2018a. Characterizing the natural language descriptions in software
logging statements. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, New York, NY, USA. Piscataway: IEEE, 178–189.

He P, Zhu J, He S, Li J, Lyu MR. 2016a. An evaluation study on log parsing and its use in log
mining. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Toulouse, France. Piscataway: IEEE, 654–661.

He P, Zhu J, He S, Li J, Lyu MR. 2018b. Towards automated log parsing for large-scale log data
analysis. IEEE Transactions on Dependable and Secure Computing 15(6):931–944
DOI 10.1109/TDSC.2017.2762673.

He S, Zhu J, He P, Lyu MR. 2016b. Experience report: system log analysis for anomaly detection.
In: 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE),
Ottawa, ON, Canada. Piscataway: IEEE, 207–218.

Huynh T, Miller J. 2009. Another viewpoint on evaluating web software reliability based on
workload and failure data extracted from server logs. Empirical Software Engineering
14(4):371–396 DOI 10.1007/s10664-008-9084-6.

Investor’s Business Daily. 2018. Elastic IPO prices above range, stock nearly doubles. Available at
https://www.investors.com/news/technology/elastic-ipo-initial-public-offering/.

Juvonen A, Sipola T, Hämäläinen T. 2015. Online anomaly detection using dimensionality
reduction techniques for HTTP log analysis. Computer Networks 91(1–2):46–56
DOI 10.1016/j.comnet.2015.07.019.

Kabinna S, Bezemer C-P, ShangW, Hassan AE. 2016. Logging library migrations: a case study for
the apache software foundation projects. In: Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, Austin, Texas. New York, NY, USA: ACM, 154–164.

Kc K, Gu X. 2011. ELT: efficient log-based troubleshooting system for cloud computing
infrastructures. In: 2011 IEEE 30th International Symposium on Reliable Distributed Systems,
Madrid, Spain. Piscataway: IEEE, 11–20.

Khatuya S, Ganguly N, Basak J, Bharde M, Mitra B. 2018. ADELE: anomaly detection from event
log empiricism. In: IEEE INFOCOM, 2018 - IEEE Conference on Computer Communications,
Honolulu, HI. Piscataway: IEEE, 2114–2122.

Kimura T, Ishibashi K, Mori T, Sawada H, Toyono T, Nishimatsu K, Watanabe A, Shimoda A,
Shiomoto K. 2014. Spatio-temporal factorization of log data for understanding network events.
In: IEEE INFOCOM, 2014 - IEEE Conference on Computer Communications. 610–618.

Kitchenham B, Charters S. 2007. Guidelines for performing systematic literature reviews
in software engineering. Technical report, Technical report, Ver. 2.3 EBSE Technical Report.
EBSE. Available at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.
471&rep=rep1&type=pdf.

Li H, Chen T-HP, Shang W, Hassan AE. 2018. Studying software logging using topic models.
Empirical Software Engineering 23(5):2655–2694 DOI 10.1007/s10664-018-9595-8.

Li H, Shang W, Hassan AE. 2017. Which log level should developers choose for a new logging
statement? Empirical Software Engineering 22(4):1684–1716 DOI 10.1007/s10664-016-9456-2.

Li S, Niu X, Jia Z, Liao X, Wang J, Li T. 2019a. Guiding log revisions by learning from software
evolution history. In: Empirical Software Engineering, Berlin: Springer, 1–39.

Li T, Jiang Y, Zeng C, Xia B, Liu Z, Zhou W, Zhu X, Wang W, Zhang L, Wu J, Xue L, Bao D.
2017. FLAP: an end-to-end event log analysis platform for system management. In: Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, Halifax, NS, Canada. New York: ACM, 1547–1556.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 34/38

http://dx.doi.org/10.1109/TDSC.2017.2762673
http://dx.doi.org/10.1007/s10664-008-9084-6
https://www.investors.com/news/technology/elastic-ipo-initial-public-offering/
http://dx.doi.org/10.1016/j.comnet.2015.07.019
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.471&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.471&rep=rep1&type=pdf
http://dx.doi.org/10.1007/s10664-018-9595-8
http://dx.doi.org/10.1007/s10664-016-9456-2
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Li Z, Chen T-H, Yang J, Shang W. 2019b. DLFinder: characterizing and detecting duplicate
logging code smells. In: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). Piscataway: IEEE, 152–163.

Liang Y, Zhang Y, Xiong H, Sahoo R. 2007. An adaptive semantic filter for blue gene/L failure
log analysis. In: 2007 IEEE International Parallel and Distributed Processing Symposium,
Long Beach, CA, USA. Piscataway: IEEE, 1–8.

Lim C, Singh N, Yajnik S. 2008. A log mining approach to failure analysis of enterprise telephony
systems. In: 2008 IEEE International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN), Anchorage, AK. Piscataway: IEEE, 398–403.

Lin H, Zhou J, Yao B, Guo M, Li J. 2015. Cowic: a column-wise independent compression for log
stream analysis. In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Shenzhen, China. Piscataway: IEEE, 21–30.

Lin Q, Zhang H, Lou J-G, Zhang Y, Chen X. 2016. Log clustering based problem identification for
online service systems. In: Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE ’16, Austin, Texas. New York: ACM, 102–111.

Liu J, Zhu J, He S, He P, Zheng Z, Lyu MR. 2019a. Logzip: extracting hidden structures via
iterative clustering for log compression. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). Piscataway: IEEE, 863–873.

Liu Z, Xia X, Lo D, Xing Z, Hassan AE, Li S. 2019b. Which variables should i log? In: IEEE
Transactions on Software Engineering. Piscataway: IEEE.

Lou J-G, Fu Q, Yang S, Xu Y, Li J. 2010.Mining invariants from console logs for system problem
detection. In: USENIX Annual Technical Conference. 1–14.

Lu S, Rao B, Wei X, Tak B, Wang L, Wang L. 2017. Log-based abnormal task detection and root
cause analysis for spark. In: 2017 IEEE International Conference on Web Services (ICWS),
Honolulu, HI, USA. Piscataway: IEEE, 389–396.

Makanju A, Zincir-Heywood AN, Milios EE. 2012. A lightweight algorithm for message type
extraction in system application logs. IEEE Transactions on Knowledge and Data Engineering
24(11):1921–1936 DOI 10.1109/TKDE.2011.138.

Makanju AA, Zincir-Heywood AN, Milios EE. 2009. Clustering event logs using iterative
partitioning. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’09, Paris, France. New York: ACM, 1255–1264.

Mariani L, Pastore F. 2008. Automated identification of failure causes in system logs. In: 2008 19th
International Symposium on Software Reliability Engineering (ISSRE), Seattle, WA, USA.
Piscataway: IEEE, 117–126.

Mavridis I, Karatza H. 2017. Performance evaluation of cloud-based log file analysis with Apache
Hadoop and Apache Spark. Journal of Systems and Software 125(10):133–151
DOI 10.1016/j.jss.2016.11.037.

Meng W, Liu Y, Zhu Y, Zhang S, Pei D, Liu Y, Chen Y, Zhang R, Tao S, Sun P, Zhou R. 2019.
LogAnomaly: unsupervised detection of sequential and quantitative anomalies in unstructured
logs. In: IJCAI. 4739–4745.

Nandi A, Mandal A, Atreja S, Dasgupta GB, Bhattacharya S. 2016. Anomaly detection using
program control flow graph mining from execution logs. In: Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
San Francisco, California, USA. New York: ACM, 215–224.

Neves F, Machado N, Pereira J. 2018. Falcon: a practical log-based analysis tool for distributed
systems. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Luxembourg City. Piscataway: IEEE, 534–541.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 35/38

http://dx.doi.org/10.1109/TKDE.2011.138
http://dx.doi.org/10.1016/j.jss.2016.11.037
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Oliner A, Stearley J. 2007. What supercomputers say: a study of five system logs. In: 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07). Piscataway:
IEEE, 575–584.

Oprea A, Li Z, Yen T-F, Chin SH, Alrwais S. 2015.Detection of early-stage enterprise infection by
mining large-scale log data. In: 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, Rio de Janeiro, Brazil. Piscataway: IEEE, 45–56.

Park BH, Hukerikar S, Adamson R, Engelmann C. 2017. Big data meets HPC log analytics:
scalable approach to understanding systems at extreme scale. In: 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Honolulu, HI, USA. Piscataway: IEEE, 758–765.

Pecchia A, Cinque M, Carrozza G, Cotroneo D. 2015. Industry practices and event logging:
assessment of a critical software development process. In: Proceedings of the 37th International
Conference on Software Engineering - Volume 2, ICSE ’15, Florence, Italy. Piscataway: IEEE Press,
169–178.

Pecchia A, Russo S. 2012.Detection of software failures through event logs: an experimental study.
In: 2012 IEEE 23rd International Symposium on Software Reliability Engineering, Dallas, TX,
USA. Piscataway: IEEE, 31–40.

Petersen K, Feldt R, Mujtaba S, Mattsson M. 2008. Systematic mapping studies in software
engineering. In: 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE). 1–10.

Pi A, Chen W, Zhou X, Ji M. 2018. Profiling distributed systems in lightweight virtualized
environments with logs and resource metrics. In: Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’18, Tempe,
Arizona. New York: ACM, 168–179.

Prewett JE. 2005. Incorporating information from a cluster batch scheduler and center
management software into automated log file analysis. In: CCGrid 2005. IEEE International
Symposium on Cluster Computing and the Grid, Cardiff, Wales, UK. Vol. 1. Piscataway: IEEE,
133–139.

Ramakrishna V, Rajput N, Mukherjea S, Dey K. 2017. A platform for end-to-end mobile
application infrastructure analytics using system log correlation. IBM Journal of Research and
Development 61(1):2:17–2:26 DOI 10.1147/JRD.2016.2626862.

Ren Z, Liu C, Xiao X, Jiang H, Xie T. 2019. Root cause localization for unreproducible builds via
causality analysis over system call tracing. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, 527–538.

Roche J. 2013. Adopting DevOps practices in quality assurance. Communications of the ACM
56:38–43.

Rong G, Zhang Q, Liu X, Gu S. 2017. A systematic review of logging practice in software
engineering. In: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing.
Piscataway: IEEE, 534–539.

Russo B, Succi G, Pedrycz W. 2015.Mining system logs to learn error predictors: a case study of a
telemetry system. Empirical Software Engineering 20(4):879–927
DOI 10.1007/s10664-014-9303-2.

Shalan A, Zulkernine M. 2013. Runtime prediction of failure modes from system error logs. In:
2013 18th International Conference on Engineering of Complex Computer Systems, Singapore,
Singapore. Piscataway: IEEE, 232–241.

Shang W, Nagappan M, Hassan AE. 2015. Studying the relationship between logging
characteristics and the code quality of platform software. Empirical Software Engineering
20(1):1–27 DOI 10.1007/s10664-013-9274-8.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 36/38

http://dx.doi.org/10.1147/JRD.2016.2626862
http://dx.doi.org/10.1007/s10664-014-9303-2
http://dx.doi.org/10.1007/s10664-013-9274-8
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Shang W, Nagappan M, Hassan AE, Jiang ZM. 2014. Understanding log lines using development
knowledge. In: 2014 IEEE International Conference on Software Maintenance and Evolution.
Piscataway: IEEE, 21–30.

Spencer D, Warfel T. 2004. Card sorting: a definitive guide. Boxes and Arrows, 2. Available at
https://boxesandarrows.com/card-sorting-a-definitive-guide/.

Steinle M, Aberer K, Girdzijauskas S, Lovis C. 2006. Mapping moving landscapes by mining
mountains of logs: novel techniques for dependency model generation. In: Proceedings of the
32Nd International Conference on Very Large Data Bases, VLDB ’06. Seoul, Korea. 1093–1102.

Tan J, Kavulya S, Gandhi R, Narasimhan P. 2010. Visual, log-based causal tracing for
performance debugging of mapreduce systems. In: 2010 IEEE 30th International Conference on
Distributed Computing Systems. Piscataway: IEEE, 795–806.

Tang D, Iyer R. 1992. Analysis of the VAX/VMS error logs in multicomputer environments-a case
study of software dependability. In: Proceedings Third International Symposium on Software
Reliability Engineering, Research Triangle Park, NC, USA. Piscataway: IEEE Comput. Soc. Press,
216–226.

Tang L, Li T. 2010. LogTree: a framework for generating system events from raw textual logs.
In: 2010 IEEE International Conference on Data Mining, Sydney, Australia. Piscataway: IEEE,
491–500.

TechCrunch. 2017. Sumo Logic lands $75 million Series F, on path to IPO. Available at
https://techcrunch.com/2017/06/27/sumo-logic-lands-75-million-series-f-on-the-road-to-ipo/.

Tian J, Rudraraju S, Li Z. 2004. Evaluating web software reliability based on workload and failure
data extracted from server logs. IEEE Transactions on Software Engineering 30(11):754–769
DOI 10.1109/TSE.2004.87.

Tsao MM, Siewiorek DP. 1983. Trend analysis on system error files. In: Proceedings 13th
International Symposium on Fault-Tolerant Computing. 116–119.

Ulrich A, Hallal H, Petrenko A, Boroday S. 2003. Verifying trustworthiness requirements in
distributed systems with formal log-file analysis. In: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, 2003. 10.

Usability.gov. 2019.Usability.gov: card sorting. Available at https://www.usability.gov/how-to-and-
tools/methods/card-sorting.html.

Wang J, Li C, Han S, Sarkar S, Zhou X. 2017. Predictive maintenance based on event-log analysis:
a case study. IBM Journal of Research and Development 61(1):11:121–11:132
DOI 10.1147/JRD.2017.2648298.

Wu F, Anchuri P, Li Z. 2017. Structural event detection from log messages. In: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’17, Halifax, NS, Canada. New York, NY, USA: ACM, 1175–1184.

Xu W, Huang L, Fox A, Patterson D, Jordan M. 2009a. Online system problem detection by
mining patterns of console logs. In: 2009 Ninth IEEE International Conference on Data Mining,
Miami Beach, FL, USA. Piscataway: IEEE, 588–597.

XuW, Huang L, Fox A, Patterson D, JordanMI. 2009b.Detecting large-scale system problems by
mining console logs. In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, Big Sky, Montana, USA. New York: ACM, 117–132.

Yen T-F, Oprea A, Onarlioglu K, Leetham T, Robertson W, Juels A, Kirda E. 2013. Beehive:
large-scale log analysis for detecting suspicious activity in enterprise networks. In: Proceedings of
the 29th Annual Computer Security Applications Conference, New Orleans, Louisiana, USA.
New York: ACM, 199–208.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 37/38

https://boxesandarrows.com/card-sorting-a-definitive-guide/
https://techcrunch.com/2017/06/27/sumo-logic-lands-75-million-series-f-on-the-road-to-ipo/
http://dx.doi.org/10.1109/TSE.2004.87
https://www.usability.gov/how-to-and-tools/methods/card-sorting.html
https://www.usability.gov/how-to-and-tools/methods/card-sorting.html
http://dx.doi.org/10.1147/JRD.2017.2648298
http://dx.doi.org/10.7717/peerj-cs.489
https://peerj.com/computer-science/

www.manaraa.com

Yoon E, Squicciarini A. 2014. Toward detecting compromised mapreduce workers through log
analysis. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. Piscataway: IEEE, 41–50.

Yu X, Joshi P, Xu J, Jin G, Zhang H, Jiang G. 2016. CloudSeer: workflow monitoring of cloud
infrastructures via interleaved logs. In: Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16,
Atlanta, Georgia, USA. New York: ACM, 489–502.

Yuan D, Park S, Zhou Y. 2012. Characterizing logging practices in open-source software. In:
Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, Zurich,
Switzerland. Piscataway: IEEE Press, 102–112.

Yuan D, Zheng J, Park S, Zhou Y, Savage S. 2012. Improving software diagnosability via log
enhancement. ACM Transactions on Computer Systems 30(1):4:1–4:28.

Zeng Y, Chen J, Shang W, Chen T-HP. 2019. Studying the characteristics of logging practices in
mobile apps: a case study on f-droid. Empirical Software Engineering 24(6):3394–3434.

Zhang X, Xu Y, Lin Q, Qiao B, Zhang H, Dang Y, Xie C, Yang X, Cheng Q, Li Z, Chen J, He X,
Yao R, Lou J-G, Chintalapati M, Shen F, Zhang D. 2019. Robust log-based anomaly detection
on unstable log data. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn
Estonia. New York: ACM, 807–817.

Zheng Z, Yu L, Tang W, Lan Z, Gupta R, Desai N, Coghlan S, Buettner D. 2011. Co-analysis of
RAS log and job log on blue gene/P. In: 2011 IEEE International Parallel & Distributed
Processing Symposium, Anchorage, AK, USA. Piscataway: IEEE, 840–851.

Zhi C, Yin J, Deng S, Ye M, Fu M, Xie T. 2019. An exploratory study of logging configuration
practice in Java. In: 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME). Piscataway: IEEE, 459–469.

Zhou P, Gill B, Belluomini W, Wildani A. 2010. GAUL: gestalt analysis of unstructured logs for
diagnosing recurring problems in large enterprise storage systems. In: 2010 29th IEEE
Symposium on Reliable Distributed Systems, New Delhi, Punjab, India. Piscataway: IEEE,
148–159.

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D. 2015. Learning to log: helping developers make
informed logging decisions. In: Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, Florence, Italy. Piscataway: IEEE Press, 415–425.

Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR. 2019. Tools and benchmarks for automated log
parsing. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). Piscataway: IEEE, 121–130.

Cândido et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.489 38/38

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.489

	Log-based software monitoring: a systematic mapping study
	Introduction
	Survey methodology
	Results
	Discussion
	Threats to validity
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

